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Dummy prototype and communication
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The T-Cell substitution cell was developed
and prototyped. It consists of the following
main components:

e 0.2 mm stainless steel hull

e Heating flex print

* Printed plastic sleeve

e Electronics with power line communication
via UART protocol

e Topcap

Advanced VTMS Co-Simulation
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A thermal management co-simulation
framework was developed for an FCEV at the
overall vehicle level. In this co-simulation,
advanced simulation methodologies were
implemented at the subsystem level of fuel
cell, battery, electric motor and HVAC.

By combining the 1D thermal management

software KULI with MATLAB/Simulink,
advanced modeling and simulation
capabilities were achieved.
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Extends simulation to the BMS level for in-
depth analysis of pack dynamics.
A Software-in-the-Loop (SiL) setup enables

virtual testing, optimization, and integration of
data-driven models into physical battery

simulations.
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Testbed coupling and SiL
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Converting thermal flow
rate into suitable PWM
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In the SiL approach, the measured wall
temperature of the substitution cell is used
as a boundary condition in the simulation.

The simulation model calculates a new
thermal field and returns the wall heat flow
to the dummy as a setpoint for the heating.

With this SiL methodology, testbed cooling

mechanisms can be coupled with real time
battery simulation.

2D Thermal Stack Modeling
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A high-resolution 2D thermal stack model

that precisely resolves temperature

inhomogeneities within the PEM fuel cell
stack was developed.
By segmenting the stack macroscopically and

modeling microscale thermal networks,

accurately captures local heat transfer

between cells and fluids, allowing detailed

analysis of flow-dependent effects on heat

transfer and temperature gradients.

Al-modeling Methodology
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Output System

Combines mechanistic (electrochemical)
and data-driven modeling - merging physical

accuracy with adaptive learning. Enables
scalable modeling and clear
representation of nonlinear system behavior

robust,

across real operating conditions.
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Simulation

temperature distribution at cell surface
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A simulation environment was established to
reflect the behaviour of a real cell with the
highest possible degree of abstraction while
maintaining good reliability.

Therefore, a hybrid simulation model, which
consists of an electrochemical (EC) model
with an equivalent circuit and a thermal
network (TN) was utilized.

Fuel Cell Air Compressor Concepts
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Electric Supercharger (ESC) and
Electrically Assisted Turbocharger (EAT)
were analyzed to enhance the efficiency of the
air supply system and the overall vehicle.

EAT highly reduces compressor power
(—40 %) and H. consumption (—3 %) under
high-temperature, low-humidity conditions.
Water spray injection (WSI) at compressor
inlet further decreases compressor power,
especially atelevated ambienttemperatures.

Prediction and Evaluation
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Predictive Variable
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Predicts temperature, state of charge
(SOC), and state of health (SOH) using
hybrid Al models. Self-learning capabilities
enhance adaptability, allowing early
degradation detection and real-time
optimization of battery health.
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