


#### Transformative Materials, Chemistries and Architectures





Outline

Megatrends for Transportation Cars, Trucks, Rail, Shipping, Aviation Battery or Fuel Cell? Recycling JCESR

# Where is Electric Transportation Going?

George Crabtree

Director, Joint Center for Energy Storage Research (JCESR)

University of Illinois at Chicago

Argonne National Laboratory



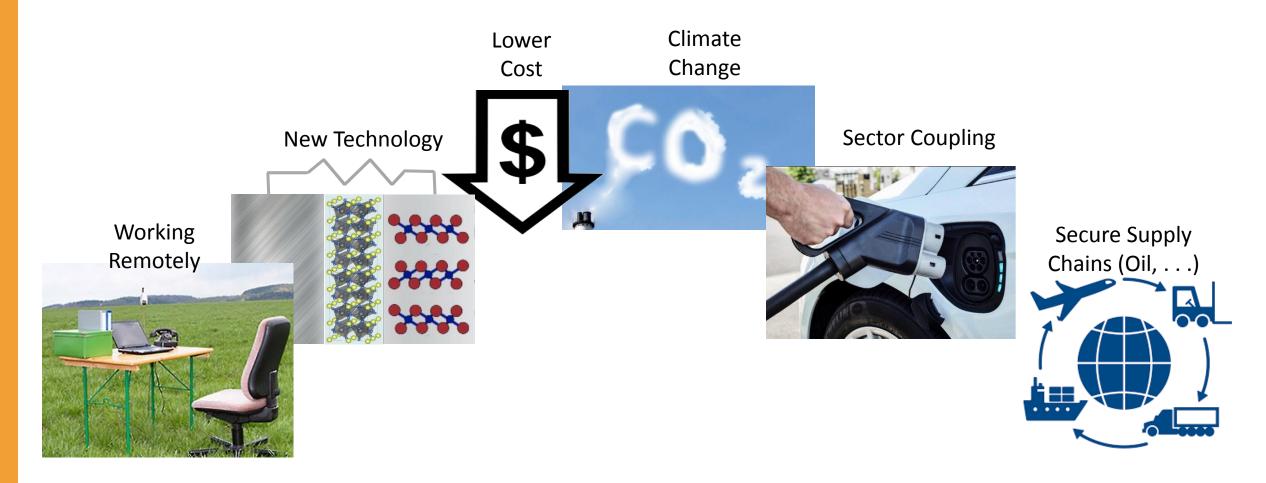
A3PS Conference Eco-Mobility Vienna, Austria November 19, 2020

## 2019 Nobel Prize in Chemistry Honors Lithium-Ion



**Batteries** 




John B. Goodenough, M. Stanley Whittingham and Akira Yoshino recognized for research that "laid the foundation of a wireless, fossil fuel-free society."

> Nobel Prize Committee October 9, 2019 https://www.nobelprize.org/prizes/chemistry/

The story behind the Prize:: Martin Winter, Brian Barnett, Kang Xu, Before Li Ion Batteries, Chem Rev 118, 11433 (2018)

### **Megatrends Shaping Transportation**





Transportation is on the cusp of historic transformation

### **Electrifying Transportation**

#### Light vehicles $\rightarrow$

battery electric faster charging, lower cost, greater safety, longer lifetime cost and convenience parity with gasoline

#### Buses $\rightarrow$

battery, hydrogen fuel cell electric

#### Medium and heavy-duty freight trucks ightarrow

battery, hydrogen fuel cell electric

Rail (already electric)  $\rightarrow$ 

replace diesel generator by hydrogen fuel cell or catenary wire

Marine shipping  $\rightarrow$ 

hydrogen fuel cell electric, hydrogen combustion

Aviation  $\rightarrow$ 

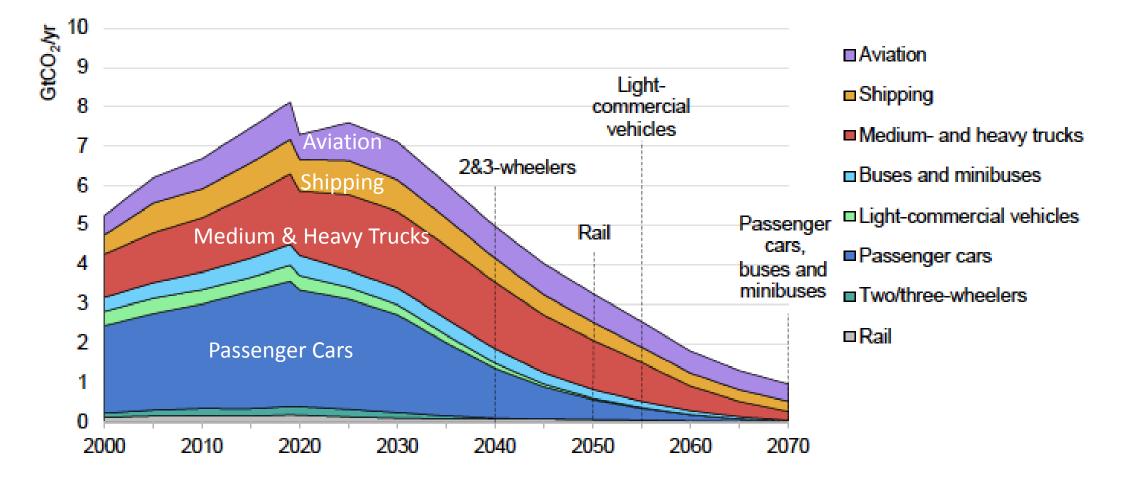
battery, hydrogen combustion, fuel cell, battery-combustion hybrid







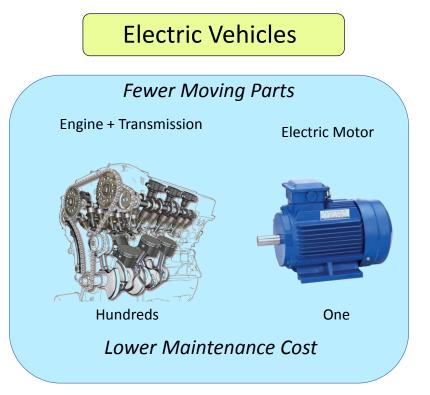


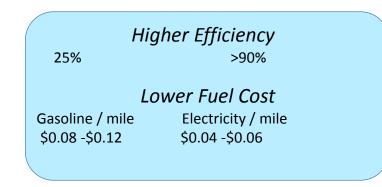




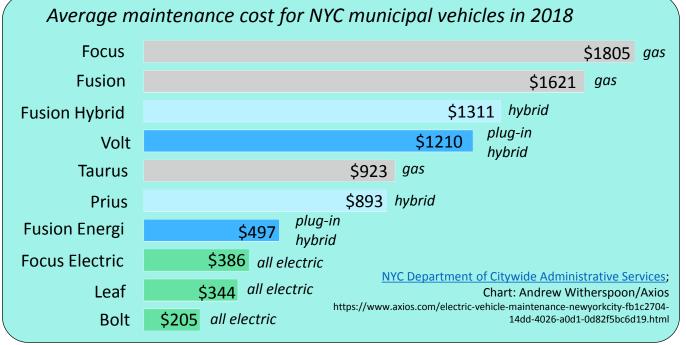



### **Carbon Dioxide Emissions from Transportation**




IEA Energy Technology Perspectives 2020 https://www.iea.org/reports/energy-technology-perspectives-2020


### Battery and Fuel Cell Electric Vehicles - High or Low Cost?

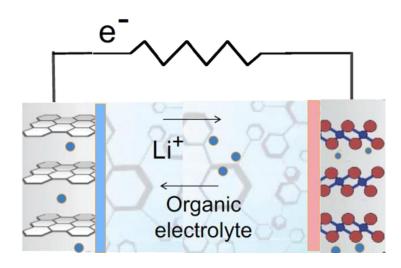






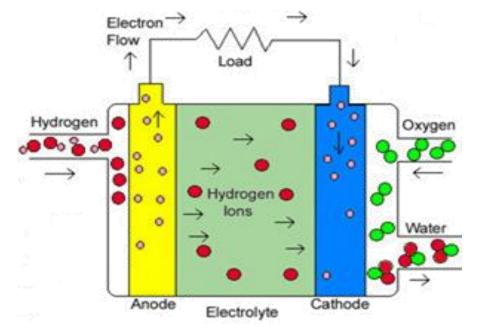
EVs are the economic choice for high mileage vehicles




Electric Vehicle Battery Cost: Barrier to Entry, Benefit for High Mileage and Fleet Use

Fleet vehicles switch to electric – high impact on sales and grid

Amazon will order 100,000 electric delivery vans from EV startup Rivian, delivery 2021-2024 https://www.theverge.com/2019/9/19/20873947/amazon-electric-delivery-vanrivian-jeff-bezos-order




### **Batteries or Fuel Cells?**



Li-ion Battery

Electricity in - Electricity out >90% round trip efficiency No carbon emissions if charged from renewable electricity Heavy weight: Specific Energy ~ 0.2kWh/kg



Hydrogen Fuel Cell "One-way battery without electrodes"

#### $2H_2 + O_2 \rightarrow 2H_2O$

No carbon emissions if fed "green" hydrogen from water electrolysis with renewable electricity Light weight: Specific Power ~ 1.6 kW/kg

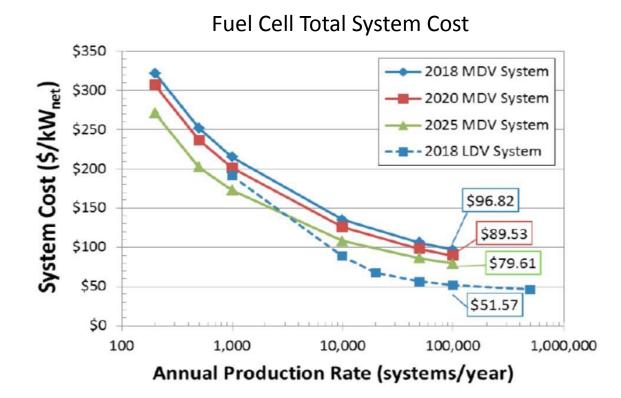
### **Battery or Fuel Cell for Heavy Duty Applications?**



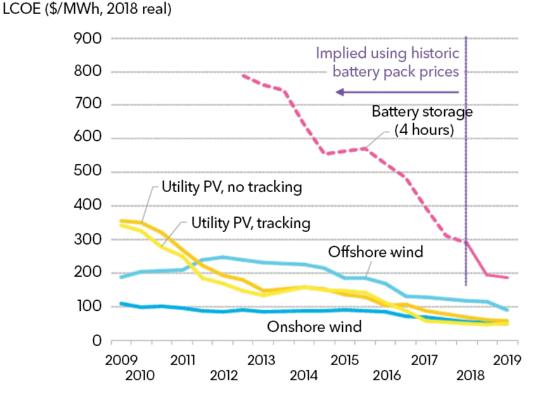
|                             | Battery Electric                                                           | Fuel Cell Electric                                            |
|-----------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|
| Carbon Emissions            | Zero if charged from emissions-<br>free electricity                        | Zero if run on green H from water electrolysis                |
|                             | Zero emission grid by 2050?                                                | Cost of electrolyzers and renewable electricity?              |
| Range                       | Less: requires heavyweight<br>batteries on truck: ~ 2 kWh/mi ~<br>10 kg/mi | More – depends on lightweight H storage capacity on truck     |
| 100% refueling              | 8 hours conventional<br>1 hour at high power                               | 10-20 min – high pressure filling<br>of H tanks               |
| Power                       | Less: slower battery chemical reaction                                     | More: faster fuel cell chemical reaction                      |
| Infrastructure              | Charging stations, electricity readily available                           | Green hydrogen cost and deployment, not commerially available |
| Sector Coupling Flexibility | Less:<br>Grid+storage+transportation                                       | More:<br>Grid+storage+hydrogen                                |
| Supply Chain                | Foreign sources of Li, Co, Ni, Mn, processed graphite                      | Water, renewable electricity, FC components - mostly domestic |

### Hydrogen vs battery electric trucks - Long distance




#### Trips up to 400 km represent 62% of EU truck activity

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fuel cell electric truck | Battery electric truck                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                       | 30                                              |
| Total cost of ownership over first 5-year<br>user period (based on France)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | € 459 k                  | € 393 k                                         |
| Vehicle purchase costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | €139 k                   | €167 k                                          |
| Annual renewable fuel costs <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | € 38 k                   | € 22 k                                          |
| Cost parity with diesel without subsidies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mid 2040s                | Early 2030s                                     |
| Economies of scale with cars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Low                      | High                                            |
| Max range without refuelling / recharging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1200 km                  | 800 km                                          |
| Refuelling / recharging time (full)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10-20 minutes            | 8 hours (overnight)<br>60 minutes (opportunity) |
| Net payload loss (weight) <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None                     | None                                            |
| 1: Renewable fuel costs are incl. taxes, levies and charges, transport and distribution costs for electricity and fuel; assuming renewable hydrogen cost for the end user of € 5.40/kg (2030) and renewable electricity cost for the end user of €-cent 15.26/kWh (2030).<br>2: Additional weight from the onboard battery pack (assumed energy density of 318 Wh/kg in 2030) of 4.2 t is compensated for by the additional ZEV weight allowance (2 t) under the EU Weights & Dimensions Directive and net savings from replacing a conventional with an electric drivetrain (2.4 t). |                          |                                                 |
| For methodology and sources see also:<br>The set of transportenvironment.org  For methodology and sources see also:<br>https://www.transportenvironment.org/sites/te/files/2020_06_TE_comparison_hydrogen_battery_electric_trucks_methodology.pdf                                                                                                                                                                                                                                                                                                                                     |                          |                                                 |

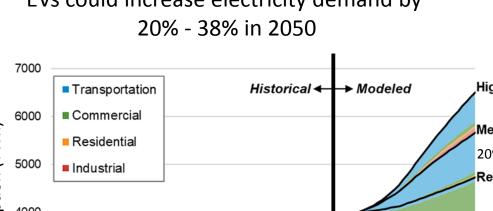

Transport and Environment: Comparison of Hydrogen and Battery Electric Trucks https://www.transportenvironment.org/sites/te/files/publications/2020\_06\_TE\_comparison\_hydrogen\_battery\_electric\_trucks\_methodology.pdf

### Fuel Cell and Battery Costs Follow Similar Paths

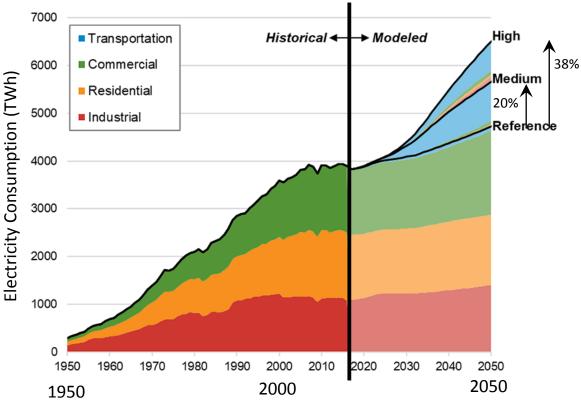




Source: Burke and Sinha, *Technology, Sustainability, and Marketing of Battery Electric and Hydrogen Fuel Cell Medium-Duty and Heavy-Duty Trucks and Buses in 2020-2040,* National Center for Sustainable Transportation, UC Davis, March 2020, *https://escholarship.org/uc/item/7s25d8bc* 




Source: BloombergNEF. Note: The global benmark is a country weighed-average using the latest annual capacity additions. The storage LCOE is reflective of a utility-scale Li-ion battery storage system running at a daily cycle and includes charging costs assumed to be 60% of whole sale base power price in each country.


https://about.bnef.com/blog/battery-powers-latest-plunge-costs-threatens-coal-gas/

High Production  $\rightarrow$  Low Cost

### **Electric Vehicles Enable Sector Coupling Flexibility**



EVs could increase electricity demand by



Source: NREL, https://www.utilitydive.com/news/evs-could-drive-38-rise-in-us-electricity-demand-doe-lab-finds/527358/

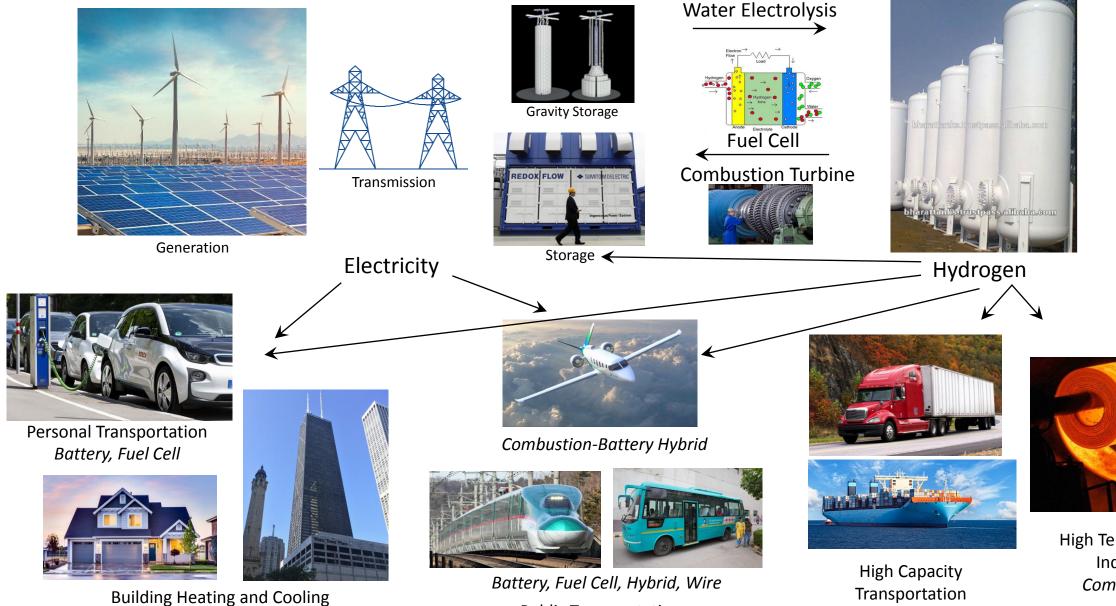




Integrates transportation and the electricity grid into a single universal energy system Frees transportation from dependence on foreign oil Path to decarbonize transportation along with electricity grid

How to meet additional demand?

• Charge off peak to avoid building new generation capacity


Off-peak capacity is typically idle gas peaker plants

 $\rightarrow$  Significantly greater carbon emissions than renewable charging

Solution: Charge EVs only with renewable electricity Replace gas peaker plants with storage

#### Electricity+Storage+Hydrogen: A Fully Integrated, Flexible, Decarbonized Energy System





Wire

**Public Transportation** 

Fuel Cell

**High Temperature** Industry Combustion

### Two Kinds of All-Electric Flight



Scale up prototype all-electric air taxis



Electrify full size plane

Urban Air Taxi Boeing's first autonomous air taxi flight ends in fewer than 60 seconds. Jan 19, 2019 https://www.cnn.com/2019/01/23/tech/b oeing-flying-car/index.html

*Expected deployment* 2020-2025

#### Hybrid-electric passenger flight

VoltAero Cassio https://en.wikipedia.org/wiki/VoltAero Cassio Ampaire Electric EEL https://en.wikipedia.org/wiki/Ampaire Electric EEL

https://robbreport.com/motors/aviation/hybridelectric-airplane-rewrite-aviation-two-years-2919373/

4 to 6 passengers 1 fossil engine 170 kW (230 hp) 5 electric motors 60 kW (80 hp) each Speed: 370 km/h (230 mph, 200 kn) Hybrid range: 1,200 km (750 mi, 650 nmi) Electric range: 200 km (110 nmi)



Eviation Aircraft "Alice" <u>https://www.eviation.co/alice/</u> 9 passengers, 650 mile range, 275 mph, 10 000-30 000 ft, Li-ion 900kWh, propellers on tail and wingtips, \$4M Planes bought by Cape Air, Barnstable MA, for short hop coastal flights



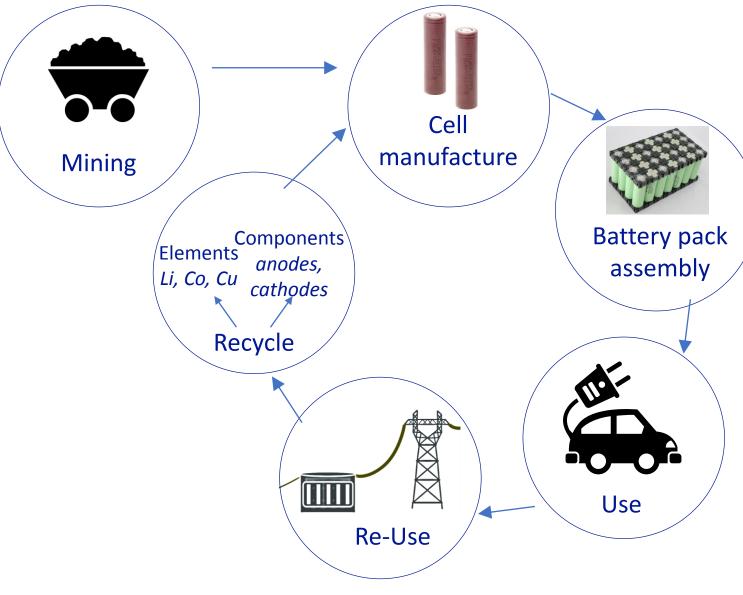
Paris Air Show Le Bourget, Paris, June 17-23, 2019

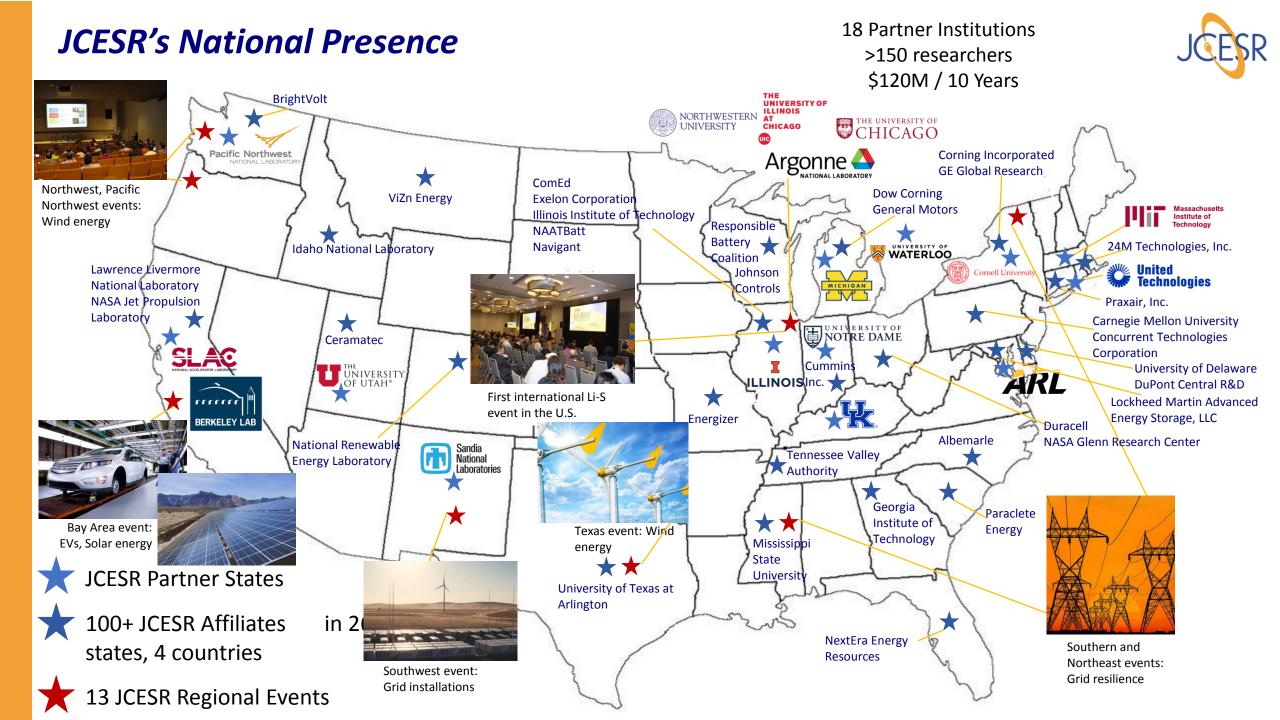


### *Li-ion Recycling – a Ripe Opportunity*



> 99% of lead-acid batteries recycled

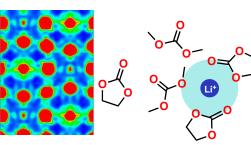

< 5% of Li-ion batteries recycled

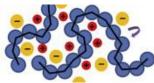

Growing EV market → Li-ion recycling

Design for re-use and recycle

DOE launches first lithium-ion battery recycling R&D center Feb 15, 2019

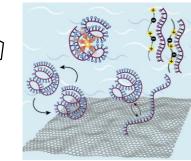
https://www.anl.gov/article/doe-launches-its-firstlithiumion-battery-recycling-rd-center-recell



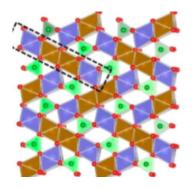

### **Three Primary Directions**




Liquid and Solid Solvation

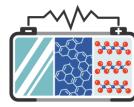





Solids, Liquids, Polymers, Membranes

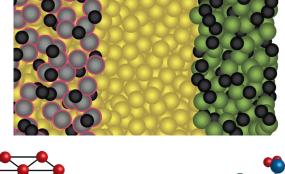
Motivation Solvation controls nearly every electrochemical phenomena required to store and release energy in batteries Redoxmer Design



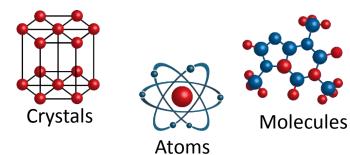

Redox-active polymers for flow batteries

Motivation Immense untapped design space for disruptive redoxflow battery performance Multivalent Ion Materials Design




Mg<sup>++</sup>, Ca<sup>++</sup>, Zn<sup>++</sup> working ions

Motivation High energy density Unexplored new MV solvation, reaction, and interfacial phenomena A diversity of batteries for a diversity of uses




Meet all performance requirements simultaneously

Transformative Materials, Chemistries, and Architectures



Build Batteries from the Bottom Up



Trahey et al, Energy Storage Emerging: A Perspective from JCESR, PNAS 117, 12550 (2020)

#### Extensive use of Electrolyte Genome, Materials Project and Machine Learning

JCESR

### **Further Reading**

#### **Energy Storage Outlook**

Arbabzadeh et al, *The role of energy storage in deep decarbonization of electricity production*, Nature Communications 19, 3413 (2019)

Albertus et al, Long-Duration Electricity Storage Applications, Economics, and Technologies, Joule 4, 1 (2020)

Ziegler et al, Storage Requirements and Costs of Shaping Renewable Energy Toward Grid Decarbonization, Joule 3, 2134 (2019)

#### **Electric Vehicles**

Crabtree, The Coming Electric Vehicle Transformation, Science 366, 422 (2019)

International Energy Agency, *Global EV Outlook 2019* (May 2019), <u>https://www.iea.org/reports/global-ev-outlook-2019</u>

Transport and Environment, *Electric Surge-Carmakers Electric Car Plans Across Europe*, 2019-2025, <u>https://www.transportenvironment.org/sites/te/files/publications/2019\_07\_TE\_electric\_cars\_report\_final.pdf</u>

#### Hydrogen

Staffell et al, The role of hydrogen and fuel cells in the global energy system, Energy Environmental Science 12, 463 (2019)

#### **Recycling Li-ion Batteries**

Mayyas et al, *The case for recycling: Overview and challenges in the materials supply chain for automotive Li-ion batteries*, Sustainable Materials and Technologies 19, e00087 (2019)



# Thank You!