

Christian Bauer :: Energy Systems Analysis (LEA), PSI

Carbon Capture and Storage and its role in sustainable transport – the life cycle perspective

Eco-mobility 2020, November 19, 2020

Sustainable transport

1. Climate change

2. Local/regional air pollution

Carbon Capture and Storage (CCS) – relevance for mobility

1. CCS in power generation

2. CCS in hydrogen production

«Low-carbon» electricity from coal, NG, or biomass power plants with CCS, used in Battery Electric Vehicles «Low-carbon» hydrogen from natural gas or biomass with CCS, used in Fuel Cell Electric Vehicles

The life cycle perspective: Life Cycle Assessment (LCA)

LCA quantifies the total environmental burdens of all relevant environmental exchanges over a products' lifetime: production, use, end-of-life; and groups these into environmental impact categories

Road Production & Maintentance

«Clean» (?) fuels for mobility?

Electricity generation (with CCS) – GHG emissions

- CCS can reduce GHG emissions of fossil power (almost) to the level of renewables and nuclear power
- CCS for biomass power (BECCS) allows for negative GHG emissions

PAUL SCHERRER INSTITUT

Hydrogen production (with CCS)

Antonini, C., Treyer, K., Moioli, E., Bauer, C., Mazzotti, M. (submitted) Hydrogen from wood gasification with CCS – a techno-environmental analysis of production and use as transport fuel. Sustainable Energy & Fuels, in review, https://chemrxiv.org/articles/preprint/Hydrogen_from_Wood_Gasification with CCS a Technoenvironmental Analysis of Production and Use as Transport Fuel/13213553/1

Hydrogen production (with CCS) – GHG emissions

Antonini et al. (submitted)

Passenger vehicles – GHG emissions

- FCEV with H₂ from natural gas with CCS show very good GHG performance
 - ✓ Equal to H₂ from electrolysis with very low-C electricity
 - ✓ Similar to BEV with low-C electricity
- FCEV with H₂ from biomethane with CCS almost allow for climate-neutral transport
- BEV with CCS-electricity similar to NG-H₂-CCS FCEV re GHG emissions
- Synthetic e-fuels suffer from a low energy efficiency in the fuel production chain

Sacchi et al. (submitted)

PAUL SCHERRER INSTITU

Trucks – GHG emissions BEV vs ICEV-diesel (40t vehicle, 800km range)

- Large BEV trucks limited by battery technology today
 - ✓ Only short ranges possible
 - ✓ Negative impact on environmental performance
- Doubling of specific battery storage capacity by 2050 expected
 - ✓ Larger ranges possible
 - Better environmental performance
- Still substantial amounts of low-C electricity required

FCEV trucks – better low-carbon option today

Trucks – GHG emissions (40t vehicle, year 2050, 800km range)

- FCEV with H₂ from SMR+CCS and BEV with fossil power + CCS reduce GHG emissions by 50%
- Biomass CCS-fuels (electricity and H₂) allow for much largest reductions of GHG emissions
- Sustainable biomass is a limited resource with competing use options

Geological CO₂ storage – dream or reality?

- 1 MTPA OF CO₂ (AREA OF CIRCLES PROPORTIONAL TO CAPACITY)

Global CCS Institute (2018) «The Global status of CCS.»

Northern Lights Project

Northern Lights

A European CO₂ transport and storage network

E Latest News October 20, 2020

Menu

Preparing the onshore facilities for the Northern Lights project

https://northernlightsccs.com/en

Take home messages – CCS for clean transport

- Carbon-neutral mobility/energy systems/economies have to build upon all low-carbon technologies: electrification, hydrogen, syn-fuels, CCS
- Fossil electricity with CCS as well as hydrogen from natural gas with CCS and from biomass can be considered as «low-carbon» or «zero-carbon» fuels (similar to electrolysis with low-carbon electricity)
- BECCS and hydrogen from biomass with CCS removes CO₂ from the atmosphere (limited biomass resources need to be taken into account)
- Low-carbon natural gas and biomass-based H₂ does not depend on expansion of renewable electricity generation
- In general, H₂-FCEV trucks perform better regarding GHG emissions than H₂-FCEV passenger cars and are closer to large-scale market penetration
- Policy measures are required supporting low-carbon technologies, including the establishment of a European CO₂ and H₂ infrastructure

https://carculator.psi.ch

Further information

PAUL SCHERRER INSTITUT

- Antonini, C., Treyer, K., Streb, A., Bauer, C., Mazzotti, M. (2020) Hydrogen production from natural gas and biomethane with carbon capture and storage – A techno-environmental analysis.
 Sustainable Energy & Fuels, <u>https://pubs.rsc.org/en/content/articlehtml/2020/se/d0se00222d</u>
- Antonini, C., Treyer, K., Moioli, E., Bauer, C., Mazzotti, M. (submitted) Hydrogen from wood gasification with CCS a techno-environmental analysis of production and use as transport fuel.
 Sustainable Energy & Fuels, in review, <u>https://chemrxiv.org/articles/preprint/Hydrogen_from_Wood_Gasification_with_CCS_-</u> <u>a Technoenvironmental_Analysis_of_Production_and_Use_as_Transport_Fuel/13213553/1</u>.
- Sacchi, R., Bauer, C., Cox, B., Mutel, C. (submitted) carculator: an open-source tool for prospective environmental and economic life cycle assessment of vehicles. When, Where and How can battery-electric vehicles help reduce greenhouse gas emissions?
 Renewable and Sustainable Energy Reviews, in review, <u>https://www.psi.ch/en/media/57994/download</u>
- Sacchi, R., Bauer, C., Cox, B. (submitted) Does size matter? The influence of size, load factor, range autonomy and application type on the Life Cycle Assessment of current and future trucks. Environmental Science and Technology, in review.
- Zhang, X., Bauer, C., Mutel, C. and Volkart, K. (2017) Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications. Applied Energy, <u>https://doi.org/10.1016/j.apenergy.2016.12.098</u>

Wir schaffen Wissen – heute für morgen

Thanks to:

Cristina Antonini Marco Mazzotti Anne Streb Mijndert van der Spek Brian Cox Emanuele Mojoli Romain Sacchi **Tilman Schildhauer** Karin Treyer SFOE ELEGANCY SCCERs mobility, HaE, SoE, biosweet

Contact: christian.bauer@psi.ch https://www.psi.ch/ta/

