

## H<sub>2</sub> Powertrains for the road traffic of the future

## A3PS ••••

Sustainable Propulsion Concepts and Energy Carriers for Carbon-Neutral Future -EUROPE AS FRONTRUNNER

- Motivation for Hydrogen (H<sub>2</sub>) engines
- Applications in commercial vehicles and off-road
- Key Research- and Development challenges











## Founding idea "Allianz Wasserstoffmotor"



### Initial workshop 3<sup>rd</sup> July 2020 @ KIT

22 companies support the concept of the "Allianz Wasserstoffmotor"





Key conclusions: a) Hydrogen direct injection combustion is feasible

b) Technical challenges can be solved using established development processes

c) It is sensible to introduce this technology for future commercial vehicles

4 companies and KIT have founded the "Allianz Wasserstoffmotor" and act executive committee

DAIMLER









## Hydrogen as the energy of tomorrow A Brief look back in history





"Water is the coal of the future. Energy of tomorrow will be water which is separated into Hydrogen and Oxygen using electricity. Those two elements will secure energy supply of the future."

1874 Jules Verne "The Mysterious Island"

### Hydrogen as a future energy carrier What has happened since the 2000s?



- Original driver
  - In the case of the passenger car (BMW) → CARB ZEV
- Today's driver
  - CO<sub>2</sub>-neutral fleet
- H<sub>2</sub> infrastructure development in relevant markets: JP, KR, CN, EU
- Attractive H<sub>2</sub> prices through scale-up of generation and distribution
- Significant further development of the modern combustion engine
  - Increase in power density through turbocharging
  - Tank technology, synergy with fuel cell
  - H<sub>2</sub> direct injection seems technically feasible
  - Exhaust gas aftertreatment from diesel engine can be largely adopted/simplified

## The $H_2$ engine as a complement in the future powertrain All paths needed on the way to $CO_2$ neutrality



Die Technikinitiative zur nachhaltigen Transformation



Following a technology-open approach, both Fuel Cell and H<sub>2</sub> engine should be included as possible solutions for hydrogen driven mobility.

### The H<sub>2</sub> engine as a complement in the future powertrain A purely European idea?



Die Technikinitiative zur nachhaltigen Transformation



High worldwide interest in all relevant markets

2021, International Vienna Motor Symposium, Bosch:  $\rm H_2$  ICE Powertrains for future on-road Mobility

## The H<sub>2</sub> engine as a complement in the future powertrain Paths for CO<sub>2</sub> neutral heavy-duty applications





Requirement: Renewable ("green") energy is mandatory basis for a CO<sub>2</sub> neutral mobility in both battery electric and hydrogen powertrains!

There are multiple paths to a  $CO_2$  neutral future. The H<sub>2</sub> engine is a valuable technical option.

## The H<sub>2</sub> engine as a complement in the future powertrain **Diverse applications** $\rightarrow$ **complementary solutions**







## The H<sub>2</sub> engine as a complement in the future powertrain **Diverse applications** $\rightarrow$ **complementary solutions**



e Technikinitiative zur nachnaitigen Transformation



Focus on Fuel Cell and H<sub>2</sub> Engine

H<sub>2</sub> Engine Powertrain

Fuel Cell

Powertrain

# The H<sub>2</sub> engine as a complement in the future powertrain **Challenges of the hydrogen engine**



#### Technical



Social

For the realisation of the  $H_2$  engine as a key future technology option there are 4 main technical challenges, as well as social aspects and public perception to be addressed.

# The H<sub>2</sub> engine as a complement in the future powertrain **System layout, hurdle or opportunity?**





| Component set up                          |    |                                           |  |
|-------------------------------------------|----|-------------------------------------------|--|
| Engine control unit                       | 0  | Ambient humidity / T sensor               |  |
| H <sub>2</sub> safety sensor              | 2  | EGR p/T sensor                            |  |
| Phase sensor                              | 3  | EGR valve                                 |  |
| Engine temperature sensor                 | 6  | EGR mixer                                 |  |
| Knock sensor                              | 6  | Exhaust temperature sensor                |  |
| Speed sensor                              | 6  | Waste gate                                |  |
| Oil p/T sensor                            | 0  | Brakeflap                                 |  |
| NOx Sensor (under evaluation)             | 8  | Electronic dump valve                     |  |
| Differential pressure sensor              | 9  | $H_2$ gas tank                            |  |
| AdBlue dosing module                      | 10 | H <sub>2</sub> filter                     |  |
| Boost p/T sensor                          | •  | Pressure regulation block                 |  |
| Pressure-based air flow meter             | Ð  | H <sub>2</sub> filling receptacle         |  |
| Throttle valve                            | ₿  | Crank case ventilation with               |  |
| Manifold p/T sensor                       |    | Pressure sensor                           |  |
| H <sub>2</sub> high-pressure sensor       | 14 | Explosion relief valve (opt.)             |  |
| H <sub>2</sub> medium-pressure sensor     | ❶  | H <sub>2</sub> tank valve with integrated |  |
| Hydrogen Injection - Rail                 |    | temperature sensor                        |  |
| Ignition coils                            | 16 | Opt.: H <sub>2</sub> Temp. conditioner    |  |
| Spark plugs                               |    |                                           |  |
| $H_2$ Storage control unit                |    |                                           |  |
| Hydrogen Injection – PFI/ Direct Injector |    |                                           |  |
| Hydrogen Injection - Pressure Regulator   |    |                                           |  |

2 Dosing control unit

2

Complex system layout – BUT: For manufacturing processes of engine and components there is already an established development environment in Europe with associated value creation in production

# The H<sub>2</sub> engine as a complement in the future powertrain **Challenges for engine components**



### ALLIANZ WASSERSTOFF MOTOR



- Materials for high temperature applications
- Wear resistance with high contact forces at seat inserts



#### PISTON

CYLINDER LINER

honing structure

Surface and

- H<sub>2</sub> embrittlement resistive materials
- Knock sensitivity
- Wear by oil dilution / water in oil
- Optimised ring grooves

#### Hollistic component optimisation and increased robustness required Emission reduction and wear protection measures need to be balanced

**INTAKE VALVE** 

Material and coating

wear resistance

**PISTON RINGS** 

Blow-by of H<sub>2</sub>

emissions

Oil- & particulate

Low friction coatings

with low viscosity oils

combinations for "dry"

operating conditions  $\rightarrow$ 

## The H<sub>2</sub> engine as a complement in the future powertrain Challenges for engine periphery and lubricants

**CRANK CASE VENTILATION (CCV)** 

High efficiency oil separation

H<sub>2</sub> in CCV system



Die Technikinitiative zur nachhaltigen Transformation

#### INJECTION SYSTEM

- H<sub>2</sub> embrittlement resistive materials
- Wear resistance under "dry" operating conditions



#### LUBRICANTS

- Oil dilution by combustion water contamination
- Additive formulations for H<sub>2</sub> operation → e.g. no soot contamination
- Water based lubricants

Hydrogen as fuel poses new requirements to both materials and engine periphery (e.g. media management) New approaches with lubricants and their additives are to be developed

### The H<sub>2</sub> engine as a complement in the future powertrain "Classic" emission as a challenge?



#### **Initial condition – Diesel PT**

Air Quality simulation @ Stuttgart Neckartor



## Comparison: Exhaust gas emission $H_2$ vs. Diesel

Schematic view



"Classic emissions" are no longer a challenge for the diesel engine

The hydrogen engine supports exhaust gas aftertreatment via the combustion properties of H<sub>2</sub>



<sup>1)</sup> 1 g/kWh CO<sub>2</sub> will be achieved at approx. 1.7 g/kWh NO<sub>x</sub> engine out

The H<sub>2</sub> engine as a complement in the future powertrain

Exhaust gas aftertreatment solutions for  $H_2$  engines "ready to market" based on established technologies Further development towards  $H_2$  based de-NOx technologies possible

ΙΔΝΖ

MOTOR

WASSERSTOFF



The H<sub>2</sub> engine as a complement in the future powertrain

Applications of commercial vehicles are highly heterogeneous (e.g. load, power, range, terrain, ....) → THERE IS NO "ONE SOLUTION FITS ALL"!

All 3 powertrain technologies will be needed to meet customer requirements across the various applications



## The $H_2$ engine as a complement in the future powertrain ${\color{black} Conclusions}$



| $\bigotimes$ | Hydrogen as an energy carrier for heavy-duty commercial vehicles is mandatory for achieving the global Paris climate agreement targets                                                                                             |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | In terms of robustness, speed to market and total cost of ownership, the hydrogen engine represents a very attractive CO <sub>2</sub> neutral technology option, especially for heavy-duty applications of the future              |
|              | The $H_2$ engine can complement battery electric and hydrogen fuel cell powertrains in commercial vehicles.<br>It can open the possibility to meet the customer demands across the various applications.                           |
|              | The technology of the hydrogen engine is demanding, basic research and pre-development work is ongoing and the "Allianz Wasserstoffmotor" members are convinced that the technology can be put to trial in test vehicles from 2023 |
|              | Hydrogen engine technology offers the opportunity to maintain technological leadership in Europe in a potentially key future technology                                                                                            |



Die Technikinitiative zur nachhaltigen Transformation

## Thank you very much for your kind attention!

www.allianz-wasserstoffmotor.de

Dr. Rainer Lehnen + Dr. Marco Warth | Allianz Wasserstoffmotor e.V. · Karlsruhe · Germany