


## **VERBUND**

# Hydrogen and e-Mobility

16<sup>th</sup> International A3PS Conference Vienna, November 2021





## **VERBUND** production capacity



### 132 hydroelectric power plants

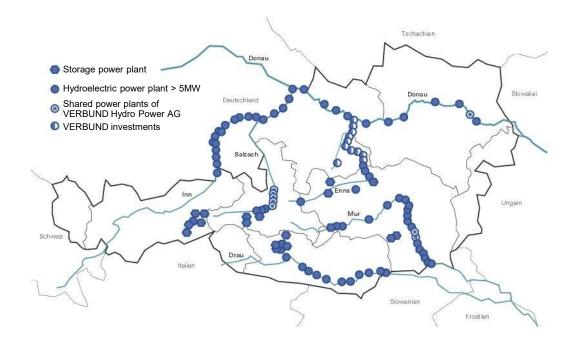
in Austria and Germany (Bavaria) – bottleneck performance about 8.222 MW



### 153 wind power plants

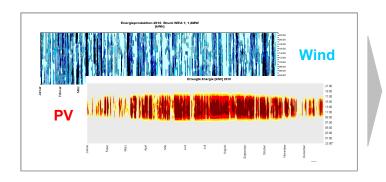
in Austria, Germany and Rumania with 418 MW total capacity

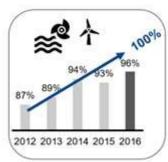


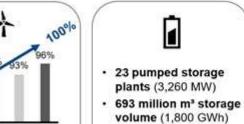

### 5.500 photovoltaic installations

with about 350.000 m<sup>2</sup> module surface approximately 44.000 kWp installed power




### 23 storage power plants


to cover load peaks, to stabilize electricity grids and to support supply security

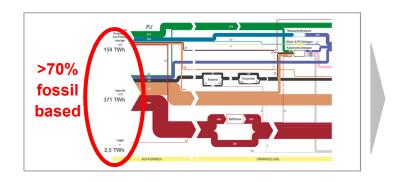


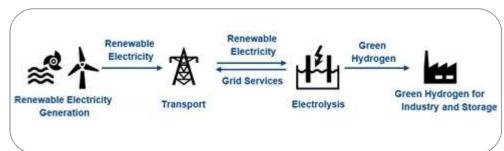



## Hydrogen as energy carrier for the electricity system








 Largest provider of grid and balancing services in Austria



## Hydrogen as feedstock for hard-to-abate sectors





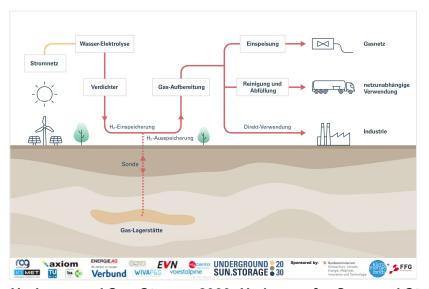
### A3PS ••••

## H2FUTURE: Green hydrogen for industry



# **H2FUTURE: PEM electrolysis at a steel production site**

- 6 MW PEM electrolyser (Siemens Silyzer 300)
- Hydrogen for steel production and grid services
- Located at steel production site in Linz, Austria
- Start of pilot plant operation started in 2019
- Pilot tests and demonstration until end of 2021



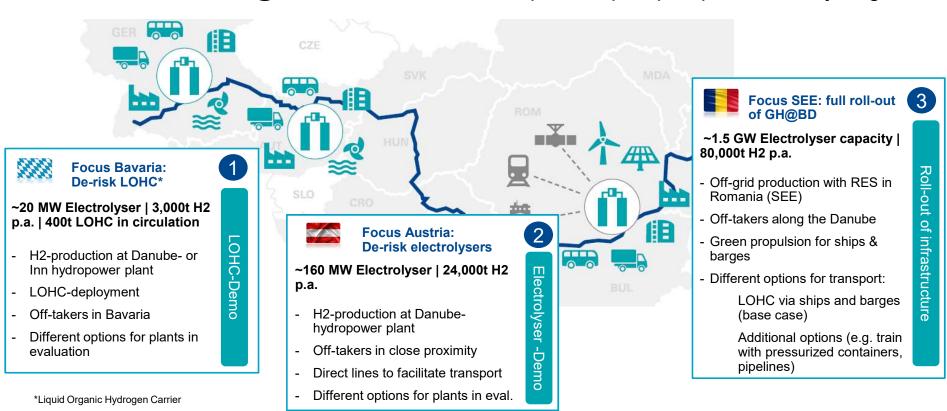

## HOTFLEX & UNDERGROUND SUN STORAGE: Green H2 as energy carrier



### **HOTFLEX: High-temperature electrolysis at CCGT site**

- 150 kW SOEC pilot plant and 20 kW SOFC
- Located at VERBUND CCGT site in Mellach
- · Lower TRL than PEM, but higher efficiency expected
- Long term vision to replace fossil based flexibilities by the reconversion of green hydrogen into green electricity




### Underground Sun Storage 2030: Hydrogen for Seasonal Storage

- Development and demonstration of large volume seasonal H2 storage in exploited natural gas reservoirs
- Production of renewable based H2 (2 MW PEM electrolyser)
- After novel purification processes, hydrogen from the storage will be feed into the natural gas grid or tested for other applications

© VERBUND AG, www.verbund.com 18.11.2021



### GREEN HYDROGEN@BLUE DANUBE: An European import perspective for hydrogen



© VERBUND AG, www.verbund.com

18.11.2021

Seite 7



## CARBON 2 PRODUCT AUSTRIA: Circular Value Chain based on green hydrogen

#### Scope

Creation of a novel carbon circular value chain stretching across the industrial sectors of energy, cement and chemicals. Green  $H_2 + CO_2$  from cement production  $\rightarrow$  renewable based plastics

#### **Vision**

Complete use of the CO<sub>2</sub> emitted from Austria's largest cement factory for the production of renewable based products in 2030

#### **Currently**

- · Refinement of technical concept
- Project development for a first demo plant which shall address the various technical, operational, regulatory and economic challenges.
- · Acquisition of Co-Financing
- Partnering

### **Main Challenges**

- · Business Case
- Technology
- Energy Demand







© VERBUND AG, www.verbund.com



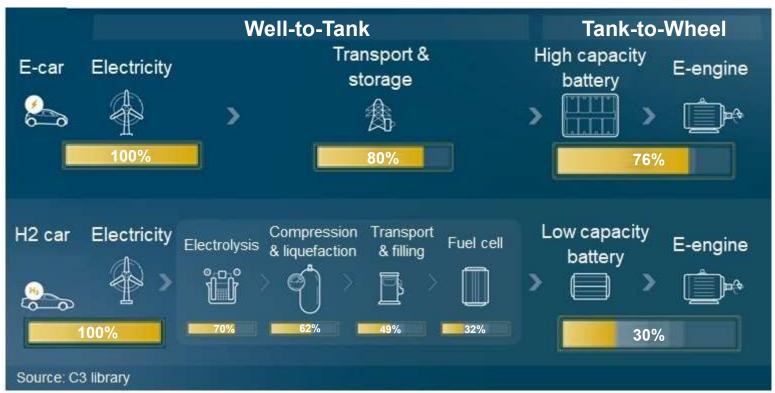
## Green Hydrogen – scarce good

"Experts see gigantic CO2 savings potential through the use of green hydrogen in the chemical industry, (...) cement production and the steel industry (...)" as well as with "air, sea and heavy transport."

Alone to cover the electricity needs for green hydrogen production for Austria's largest steel producer, we'd need the electricity output of all VERBUND Danube hydro-power plants.

\*Source: https://www.zdf.de/nachrichten/wirtschaft/klima-klimaneutralitaet-gruener-wasserstoff-100.html

### Use hydrogen where it makes sense

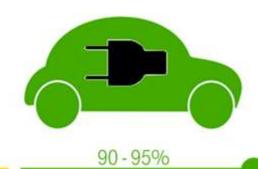

The "very poor energy efficiency well-to-wheel" of fuel cell cars ensures that battery-powered e-cars are "several times more efficient.

I am not at all against hydrogen as an energy storage medium. It's just that it has to be used where it makes sense - and that's not in passenger cars, but in the stationary sector."

Source: Prof. Maximilian Fichtner in Wirtschaftswoche, 05. November 2019



Efficiency of battery electric vehicle vs. hydrogen fuel cell car






Why we don't believe in internal combustion engine (ICE) cars and hence, not in e-fuels neither



An electric engine is five times more efficient than a combustion engine





Cars with combustion engines have 100x more moving parts than battery electric vehicles





## Our SMATRICS HPC network: 5min for 100km range (with the right car)







### **A3**PS••••

## H2ZILLERTAL: Green hydrogen as feedstock for mobility



# H2Zillertal: World's first narrow gauge hydrogen train

- Switch from diesel to hydrogen powered trains in cooperation with local public train operator
- Green hydrogen supply from local hydro power plant
- Extension to hydrogen-powered coach and bus service (skiing resort) under evaluation

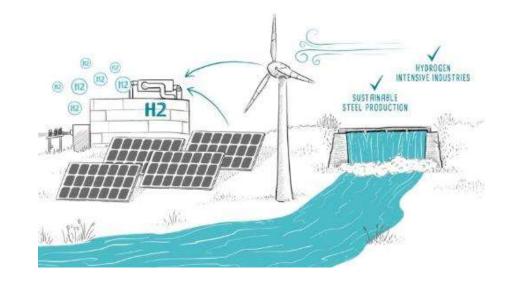


### Kontakt

#### Peter Eiler

Head of Hydrogen Center VERBUND Energy4Business GmbH

M: +43 664 8287288


E: peter.eiler@verbund.com

#### **Alexander Decker**

Project Lead E-Mobility VERBUND Energy4Business GmbH

M: +43 664 82867179

E: alexander.decker@verbund.com

