

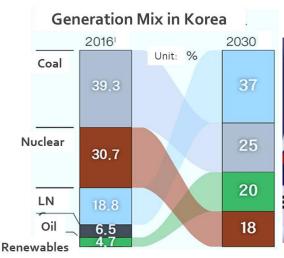
Status and Development Plan for Hydrogen Energy in Korea

- ECO-MOBILITY 2021 -

2021. 11. 18.

Jonghee Han, Ph.D.
Korea Institute of Energy Technology (KENTECH)

Backgorund


Energy Issues and Strategies in Korea

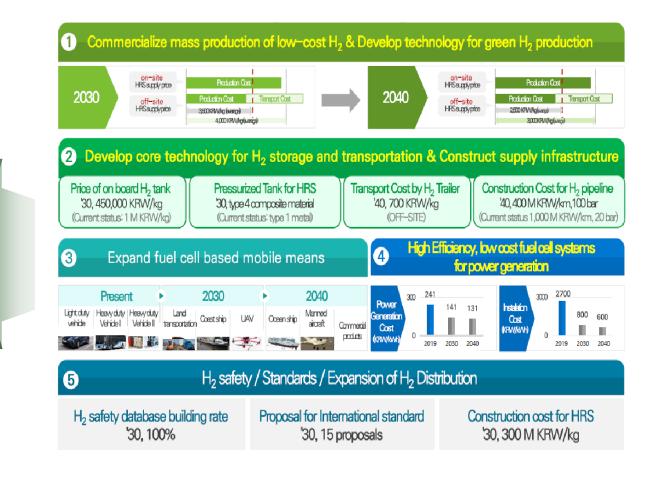
Issues

- ➤ Korea is the 8th largest energy consuming country in the world.
- ➤ Korea imports more than 95% of primary energy from abroad.
- ➤ Korea is the world's 7th largest GHG emitter in 2016.

Strategies

- Renewable Energy 3020 Implementation Plan: Increase Renewable energy's share of the energy mix from 7% to 20% by 2030.
- Reduction of GHG Emission: Carbon Neutrality by 2050
- ➤ Invest R&D and Deployment of Hydrogen Energy : Leading Hydrogen Economy in 2040

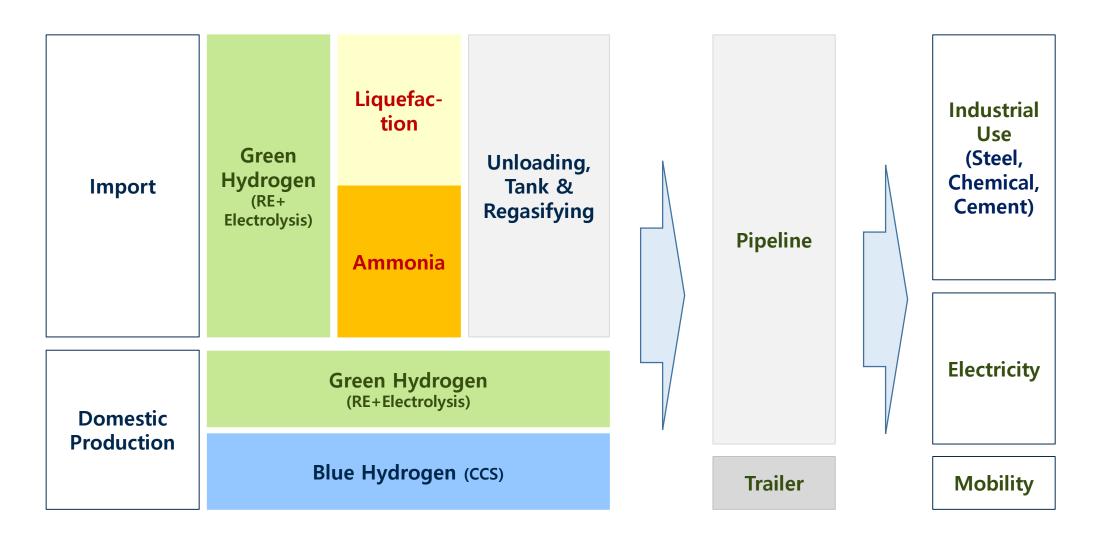
Hydrogen Economy Roadmap (2019)


			2018	2022	2040
Goal	FCEVs		1.8K	81K	6.2M
	FC power generation	Com. & Utility	307MW	1.5GW	15GW
		Res. & Buildin	7MW	50MW	2.1GW
	H2 supply (ton/year)		130K	470K	5.26M
	H2 price (KRW/kg)			6,000	3,000
	Preparation (2018~2022)		Expansion (2023~2030)		eading 30~2040)
Strategy	 Infrastr tment 	illiastructure ilives		p duc	rseas H2 pro tion ee H2 supply em

- Technology development is necessary to reach the goal successfully.
- ➤ H₂ Technology Development Roadmap is published

Hydrogen Technology Roadmap (2019)

- Leading "Hydrogen Economy " driven by Innovative Science and Technology.
- Development strategies are prepared for selected 5 core technical fields for "Hydroge n Economy"
 - Production, Storage & Trans portation, Mobility Utilizatio n, Stationary Utilization, Saf ety & Infrastructure



NDC and Carbon Neutrality Scenario

	NDC (Nationally Determined Contribution)	SCENARIO (Carbon Neutrality Scenario)		
Aiming Year	2030	2050		
	2030	Plan A	Plan B	
Target of Hydrogen	 CO2: 40% Reduction (~291Mton CO2) Amount of H2: 194 Mton Electricity: 157 Mton Mobility: 37 Mton Electrolysis: 24 Mton Reform: 77 Mton Import: 93 Mton 	- CO2: Neutral - Amount of H2: 2,740 Mton • Electricity: 1,420 Mton • Industrial: 1,060 Mton • Mobility: 150 Mton • Electrolysis: 550 Mton • Reform: - • Import: 2,190 Mton	- CO2: Neutral - Amount of H2: 2,790 Mton • Electricity: 1,350 Mton • Industrial: 1,060 Mton • Mobility: 150 Mton • Electrolysis: 300 Mton • Reform: 100 Mton • Import: 2,290 Mton	

Future Hydrogen Supply Chain

Highlight in Deployment

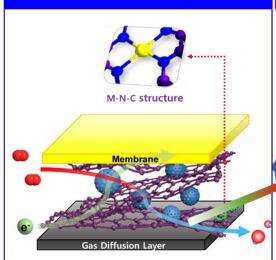
Mobility

- Passenger Cars: 10,100

- Buses : 180 - HRS : 100

Stationary

Large (>100kW): 584 MWSmall (<100kW): 25.2 MW



Highlight in R&D

Materials Development - Catalysts

Improvement of MEA electrode structure

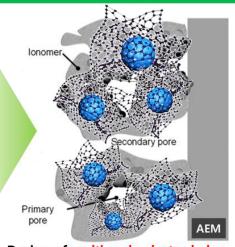
Overcoming the limitation of MEA electrode structure composed of M-N-C catalyst

- Insufficient active points & excess catalyst usage (increased thickness)
- (2) Form catalyst layer densely on Planar catalyst structure

Nano Energy, **2016**, 26, 496. Advanced Energy Materials, **2018**, 8, 1801002. Chemistry of Materials, **2018**, 30(1), 2. Small, **2019**, 15(36), 1902090. Development of nano graphene spacer with high activity and high specific surface are

Graphene-encapsulated TM nanoparticle Active carbon spacer OH Carbon support Heteroatom-doped graphene shell

Hybrid of highly active nano-graphene coated non-noble metal nanoparticles and high surface area carbon support


- (1) Development of highly active n-type nanographene catalyst structure
- (2) Formation of electrode layer pore structure utilizing porous carbon structure

Energy & Environmental Science, 2019, 12, 2200.

Applied Catalysis B: Environmental, 2020, 260, 118192.

ACS Catalysis, 2017, 7(9), 5796.

3 Development of high performance and high durability multi-scale electrode layer structure

Design of multi-scale electrode layer composed of M-N-C & nano-graphene spacer

- (1) M-N-C/spacer/lonomer binding optimization
- (2) Optimized electrode layer pore structure and ink composition
- ⇒ Performance improvement by controlling the structure of the electrode layer
- ⇒ Improved durability through strengthened combination of components
- ⇒ Maximize MEA performance and durability

 ACS Applied Materials & Interfaces, 2019, 11(31), 27735.

 ACS Sustainable Chemistry & Engineering, 2019, 7, 15487.

Highlight in R&D

Cells and Components

- Water generation at anode of anion exchage membrane fuel cell
- Water generation at cathode of cation exchage membrane fuel cell
- Simutaneous water formation at anode and cathode during fuel cell operation
- Fuel cell operation under non-humidified condition

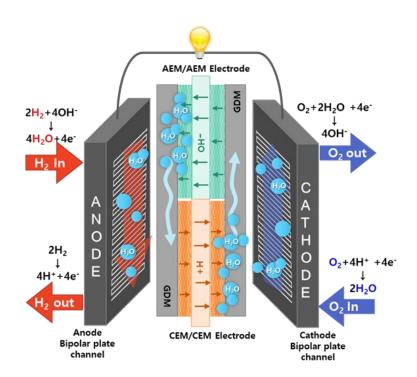


Fig. Schematic diagram of the DEMFC (C50A50)

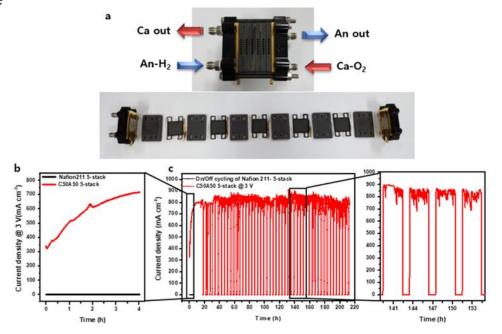
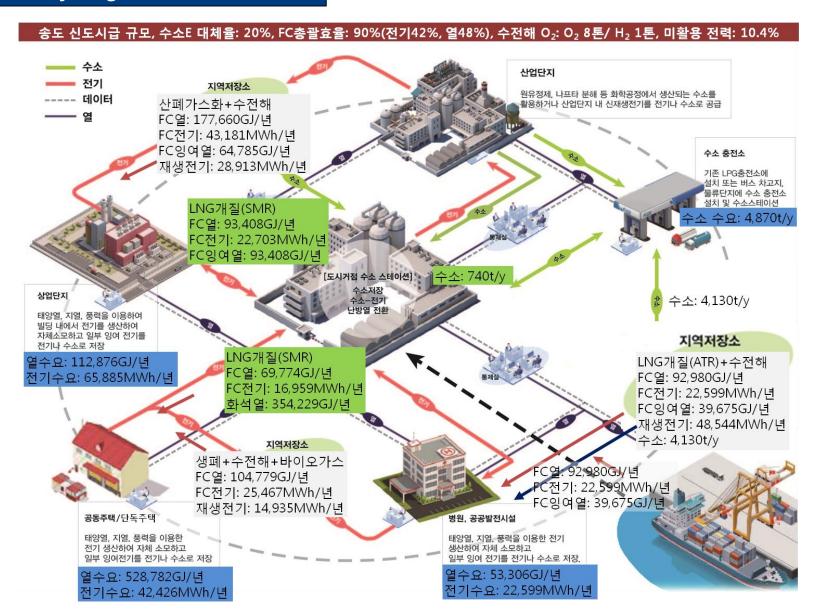


Fig. (a) Image of the five-cell stack. (b) Performance comparison of C50A50 and Nafion® 211 five-cell stacks, and (c) Accelerated on/off durability test of the C50A50 stack using dry H_2/O_2 (on: constant operation at 3 V for 3 h) and dry N_2/N_2 (off: 1 h).

Highlight in Demonstrations

Taxies and Trucks

- 20 Taxies in Seoul area (2020)
- Target :
 - 100,000km (2020) \rightarrow 500,000 km(2025)
- 50 Trucks in preparation (2020)



Highlight in Demonstrations

Hydrogen Cities

Highlight of New Products

LH2 Mobile HRS

- Mobile HRS using LH2 (Hyrium)
 - Storage Capacity :1,500-7,500L (3atm)
 - 800 atm pump system

Drones

- Doosan, Hyrium
 - 69km (1hr43min.) flight
 - 10.8L, 7L compressed H₂, or LH

Activities in Private Sector

Plans for Hydrogen

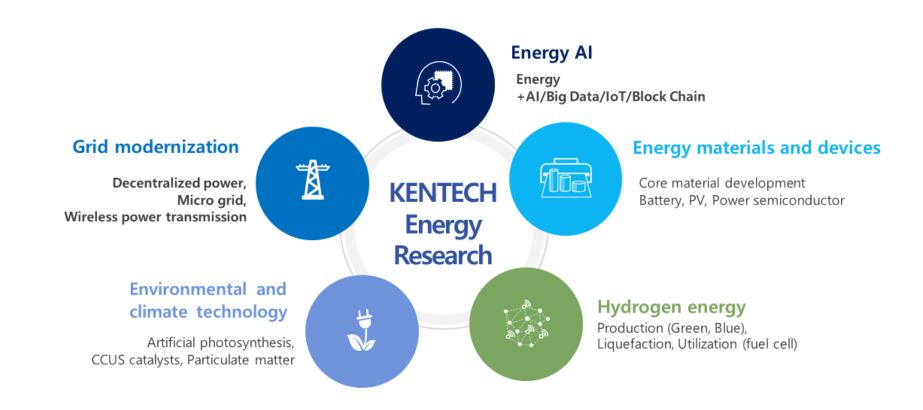
	Plans	
SK	• Luiqefaction Plant, Fuel Cells Power Generation	
Hyundai Motors	• FCV Production Facility, HRS	
POSCO	Ammonia Terminal, Hydrogen Reduction Steelmaking	
Hanhwa	• Electrolysis, H2 Turbines	
Hyosung	• Luiqefaction Plant, HRS	
Small Others	• Electrolysis, Reforming, Materials for Hydrogen	

Possible Collaboration Topics

R&D Collaboration

- Universities and National Labs. Focuses on Basic R&D, on Materials, Cells and Components for Hydrogen Production-Storages-Applications.
- Private Sector Invests Large Resources on Building Infrastructure such as Liquefaction Plant, Ammonia Combustions, Loading Ship for LH2 and Ammonia, New Applications such as mobilities.

Collaboration in Demonstration


- > Hydrogen Import Process : Production (Green) Liquefaction Loading- Ship- Unloading-Regasfying-Delivery-Application
- ➤ Analysis of Sector-Coupling

Newly Founded KENTECH

Energy Specialized College

Five research area of KENTECH

Newly Founded KENTECH

Hydrogen Energy Institute

Faculty members and expertise

Prof. Chinho PARK

- Photoelectrochemical (PEC) Systems
- Green Hydrogen Production
- Thin Film Solar Cells
- Electronic Materials Processing
- Inorganic Thermodynamics
- Computational Fluid Dynamics

Prof. Jonghee HAN (Director)

- Molten Carbonate Fuel Cells (MCFC)
- Molten Carbonate Electrolysis (MCEC)
- Hydrogen Purification Metallic Membranes
- Membrane Reactors

Prof. Chang Hee KIM

- Green Hydrogen Production
- Alkaline & PEM Electrolysis
- Electrochemical Engineering

Prof. Jihyun HWANG

- Hydrogen Liquefaction
- Hydrogen Synthesis (Ammonia, Methanol)
- LOHC
- Hydrogen Supply Chain Optimization
- Process & Mechanical Development & Engineering
- Simulation Lab-Scale Pilot Scale

Prof. Young Duk Lee

- SOFC based hybrid power generation
- Methane decomposition (Turquoise H₂)
- System and reactor design using process simulation and optimization
- Economic analysis, Life cycle assessment

New faculty members

- Material development for polymer, membrane, ceramic powder, catalyst, electrode, etc.
- Scientific computing
- Sector coupling and optimization

Thanks for Your Attention!