Vehicle Cost Perspectives of Road Vehicles through 2050

NOVEMBER 19, 2021 | THOMAS GRUBE, STEFAN KRAUS, JULIAN REUL, JOCHEN LINßEN, DETLEF STOLTEN

16th International A3PS Conference Eco-Mobility 2021

Paths to a Climate-Neutral Mobility

th.grube@fz-juelich.de

IEK-3: Techno-Economic Systems Analysis

Member of the Helmholtz Association

Motivation

Today: Fossil fuel based transport system

Future: Defossilized transport system

HDV: Heavy-Duty VehiclePtL: Power-to-LiquidBEV: Battery Electric VehicleFCEV: Fuel Cell Electric VehicleMember of the Helmholtz AssociationIEK-3: Techno-Economic Systems Analysis

2 Methodological Approach

- Total Cost of Ownership
- CAPEX (Manufacturing Cost)
- OPEX (Maintenance & Fuel Cost)
- Investigated Vehicle Types

3 Results

Total Cost of Ownership – A Tool for Evaluating Powertrain Alternatives.

Member of the Helmholtz Association

[1]

Manufacturing Costs Calculated Bottom-Up via Learning Curve Approach.

IEK-3: Techno-Economic Systems Analysis

Junginger et al., "Technological Learning in the Transition to a Low-Carbon Energy System", 2019 [2]

Member of the Helmholtz Association

5

From Usage Profiles to Fuel Costs. Various Factors to be Considered.

- Driving cycle chosen based on usage profile
- Vehicle mass calculated bottom-up

Fuel Demand

Costs

Fuel

Specific

 Drivetrain efficiency and aerodynamic performance development over time considered

- Specific fuel costs include production and infrastructure
- Infrastructure costs are vehicle type dependent
- Gasoline/Diesel infrastructure costs neglected
- Hydrogen infrastructure cheaper than electric at high market penetration levels

6

The Properties of the Investigated Vehicle Types – From Small to Large.

iger Cars	Vehicle Type	Segment / Length / Weight	BEV Driving Range (O-BEV)	Yearly Mileage
	City Car	A, B	200 km	10,000 km/a
sser	Long Distance Car	C, D, E	500-850 km	30,000 km/a
Pas	SUV Trailer Use	J	300-600 km	15,000 km/a

Buses	City Bus	18 m	225 km (100 km)	60,000 km/a
	Rural Bus	12 m	400 km (200 km)	90,000 km/a
	Coach	-	500 km (250 km)	70,000 km/a

Freight Modes	Urban Cargo	<7.5 t	230 km	35,000 km/a
	Garbage Vehicle	<26 t	300 km	30,000 km/a
	Long-Haul Semi	<40 t	600 km (200 km)	114,000 km/a

7

Member of the Helmholtz Association

1 Motivation

2 Methodological Approach

3 Results

- Vehicle Type Analysis
 - Passenger Cars
 - Buses
 - Commercial Vehicles
- Key Factor Analysis
 - Driving Range
 - Mileage
 - Fuel Costs

Electrified Vehicles Become Cheapest Option in All Cases Studied.

For Urban Vehicles, the Future is Battery-Electric from a TCO perspective.

- Smaller batteries are sufficient for short distances
- Stop-and-go traffic leads to increased benefits of electrification
- For short-distance urban passenger & freight transport BEVs the cheapest option before 2025

 ICEV: Internal combustion engine vehicle
 HEV: Hybrid electric vehicle
 HEV: Hybrid electric vehicle
 HEV:

 BEV: Battery electric vehicle
 CEV: Fuel cell electric vehicle
 HEV:
 HEV:

 TCO: Total cost of ownership
 IEK-3: Techno-Economic Systems Analysis
 10
 Itel

Different Usage Profiles lead to different TCO-Ratios for Passenger Cars.

Rural Buses Highlight the Disadvantages of BEVs.

100% Occupancy \rightarrow

 0° C at design point \rightarrow We consider **cold winter day** as design point for battery capacity Mass of passengers also to be taken into account

12

A few trips a year determine battery scaling

ICEV-d: Internal combustion engine vehicle (Diesel) O-BEV: Overhead-battery electric vehicle FCEV: Fuel cell electric vehicle

Member of the Helmholtz Association

HEV-d: Hybrid electric vehicle (Diesel) BEV: Battery electric vehicle (large battery) EATS: Exhaust aftertreatment system

IEK-3: Techno-Economic Systems Analysis

Cheaper Infrastructure is one Key to Success of Fuel Cell Semis.

ICEV: Internal combustion engine vehicle FCEV: Fuel cell electric vehicle O-BEV: Overhead-battery electric vehicle TCO: Total cost of ownership BEV: Battery electric vehicle PtL: Power to Liquid

Member of the Helmholtz Association

IEK-3: Techno-Economic Systems Analysis

13

1 Motivation

2 Methodological Approach

3 Results

- Vehicle Type Analysis
 - Passenger Cars
 - Buses
 - Commercial Vehicles
- > Key Factor Analysis
 - Driving Range
 - Mileage
 - Fuel Costs

The Influence of Driving Ranges Decreases over time.

Member of the Helmholtz Association

IEK-3: Techno-Economic Systems Analysis

15

High Mileage is not the BEV's Problem. It is the Rarely Used High Ranges.

BEV: Battery electric vehicle

FCEV: Fuel cell electric vehicle

TCO: Total cost of ownership

JÜLICH Forschungszentrum

Member of the Helmholtz Association

IEK-3: Techno-Economic Systems Analysis

BEV and FCEV: High Market Penetration Beneficial for FCEV Performance.

- Fuel cost at stations have high impact on overall TCO result
- Influence is independent of vehicle type
- Current advantages of BEV
- The higher the market penetration, the more overlapping TCO bandwidth
- Higher market penetration of FCEVs decreases difference due to economies of scale (manufacturing & infrastructure)

Hydrogen +30% Hydrogen -30%Electricity +30% Electricity -30%

- 2 Methodological Approach
- 3 Results

4 Conclusion

Conclusion

- I. The best drivetrain from a techno-economic point of view depends not on the type of vehicle but on the usage profile.
- *II. High mileage is not the BEV's problem. It is the rarely used high ranges.*

III. Higher market penetration helpful for FCEV performance due to lower manufacturing and infrastructure costs.

Thank you for your attention!

Member of the Helmholtz Association

IEK-3: Techno-Economic Systems Analysis