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LITHIUM ION - MOTIVATION
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• Energy storage – Why do we need better systems?

 $150bn Market up to 2025



WHY LITHIUM-ION TECHNOLOGIES?
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• LIBs dominate the markets for portable devices: cell/smart phones, laptops, tablet PCs, digital cameras, etc.

• Growing markets: EVs, power tools, energy storage systems for renewable energies, etc.

Advantages 

• High energy density

• Low self-discharge rate1

• High cycling stability

• No „memory effect“2

Disadvantages

• Operating temperature: max. 

60°C

• Sensitivity towards overcharge 

or deep discharge

1 Especially NiMH suffer from high self-discharge: typically 50% higher than NiCd
2 Memory effect – most pronounced for NiCd

Source: Saft SA
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• Graphite anode (-)

• Li+ + e- + 6C ↔ LiC6

• Lithium Cobalt Oxide Cathode (+) (example)

• LiCoO2 ↔ Li0.5CoO2 + 0.5 Li+ + 0.5 e-

• Charge: Li+ move from cathode to anode

• Discharge: Li+ move from anode to cathode

LITHIUM ION BATTERIES - CHEMISTRY



• Large variety of cell technologies available on 

the market: NMC, NCA, LFP, spinel, LTO, etc.

• Cells are produced for different applications: 

high power/energy

• Depending on the geometry/type of casing -

different cells available: soft-case cells 

pouch; hard-case cells  cylindrical and 

prismatic

• Cell chemistry – most influencing factor 

regarding safety, energy density, performance 

and lifetime

• Other factors: electrode/cell design and 

manufacturing, system integration, Battery 

Management System 

7

LITHIUM ION TECHNOLOGY DEVELOPMENT:

DRIVING FACTORS

BATTERY
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General Trends

• Replacing/reducing the amount of critical raw materials – e.g. Co, graphite  Ni, Mn-rich 

cathode materials; Si as anode

• Applying environmentally friendly processes for materials synthesis, electrode and cell 

manufacturing

• Replacing Li with multivalent ions (e.g. Mg, Al, Ca, Zn, Ni-ion) – for achieving better/higher energy 

storage in comparison to univalent  Li- or Na-ion batteries

• Modelling and simulating ageing mechanisms for better estimating SoX

Main Aims 

• Higher energy density for achieving a better driving range

• Lower costs

FUTURE TRENDS
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POST-LITHIUM ION CHEMISTRIES

• Current technologies and Advanced Li-Ion

• Ni rich NMC, high power LFP, LTO

• High energy cell components (thin current collectors & separators, tailored electrode 

design)

• Tomorrow‘s technologies

• Na-ion – worse than Li-Ion, but interesting (abundance, safety, cost)

• Thin film All-Solid-State – available in small format, huge interest (safety, power 

density)

• High voltage cathodes and electrolytes for Li-Ion

• Generation 2025+

• Bulk All-Solid-State – for large scale, challenge of scale up

• Mg-Ion – higher energy density than Li-Ion

• Metal-air – promising, but huge challenges in reversibility 9



General description of pouch cell production steps (incomplete)

CONVENTIONAL CELL ASSEMBLY

Coated electrodes

calendering

Electrode coating
Scale up parameters 

identified

Cell assemblyPouch cell

Slurry preparation
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• Electrode notching or cutting

HOW A POUCH CELL IS MADE – CUTTING

Current collector 

left as tab

Active area

No sharp edges –

handling and 

current 

concentration

No burr on edges 

- adhesion
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• Stacking (single stacking, z-fold, winding – advantages and disadvantages)

• Amount of electrodes determines end capacity

• E.g. 2 mAh/cm2 on a 5 x 10 cm active area:

• 2 mAh/cm2 * 50 cm2 = 100mAh per side = 200 mAh per electrode (double sided)

• 5 Ah pouch cell requires 25 electrode pairs (e.g. 25 cathodes, 26 anodes)

HOW A POUCH CELL IS MADE – STACKING
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• Electrolyte filling should happen under vacuum/reduced pressure

• Amount: important measure for proper operation and critical for industry

• starting values: 4 ml/Ah for NMC; 7ml/Ah for LFP

• Just enough, not too much (cost, gas) – not too few (resistance, performance loss)

• Filling tends to be sequential – total amount in 3-4 stages

• E.g. 5Ah NMC cell = 20 ml electrolyte

• Pull full vacuum on empty cell (remove trapped air)

• ½ amount (10 ml) at 600 mbar (abs.)

• ¼ amount (5 ml) at 300 mbar (abs.)

• ¼ amount (5 ml) at 150 mbar (abs.)

• Soaking for 30s – 60s at 150 mbar (abs.)

• Sealing at 100 mbar (abs.)
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HOW A POUCH CELL IS MADE – FILLING



Engine starting (3kW, 2-5Wh) 

Ancillary loads (400W average, 4kW peak, ~1kWh)

Absorb regenerated braking energy (per event)

3kW, ~50Wh for micro hybrid

13kW, ~100Wh for mild hybrid

40kW, ~ 1000Wh for HEV, PHEV, FC

Support Acceleration (power and energy as above)

Provide primary energy and power

10kWh – 80kWh

50-300kW

Electric

Vehicle

Full 

Hybrid

Mild 

Hybrid

Conven

tional
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PRIMARY FUNCTIONS OF THE BATTERY SYSTEM



CHALLENGE FOR COMMERCIALISATION

COST

Battery cost is
the single 

largest element
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CHALLENGES DIFFER BY POWERTRAIN
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High C Rates (>20C)

For mild and micro hybrids and high performance cars

Key technical challenges are thermal and impedence, Cost/kW

Cell Level

• Chemistry and electrode structure suited to high C

• Internal resistance of cell traded against capacity

• Thermal conductivity to cell walls/ends important

• Accurate cell level SoC understanding is critical

Pack level

• Liquid cooling or forced air cooling required

• BMS algorithms and sensors must respond to rapid  transients – active balancing 

sometimes required

Source: Continental

Source: BMW

Source: McLaren
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CHALLENGES DIFFER BY POWERTRAIN
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Source: Continental

Low C Rates (<5C)

For Electric Vehicles

Key technical challenges: energy density & Cost /kWh

Although C rates rising as performance / range increases

Cell Level

• Capacity more important than rate of reaction

• Chemistry and electrode structure designed for durability at high depth of 

discharge

• Slower transients allow for simpler cell design and monitoring

Pack level

• Air cooling generally sufficient (unless sealed)

• Simpler BMS due to slower transients.

• Packaging volume and shape constraints 17



AUTOMOTIVE – ROBUSTNESS
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Source: Continental

• Temperatures: Hot (>50°C) and cold (<-40°C) environments

• Water on the road, shock absorption

• Safety – crash impact, fire



AUTOMOTIVE – HIGH VOLUMES

19

Source: Continental

• A typical production car makes 100,000 – 500,000 units/yr

• At 200 cells per pack, this is 3 cells per second or .3s/cell

• At 7000 cells per pack, this is 100 cells per second or .01s/cell

Photograph by Michael Conroy/AP Images



AUTOMOTIVE – HIGH QUALITY
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Source: Continental

• The best laptop cells have circa 1 in 200,000 failure /yr

• Laptops have typically 6-12 cells and 3 year life so premature battery failure affects 

<0.01%/yr

• Automotive batteries have 200 to 7000 cells/car and 8-10 year life, so higher quality 

standards are required.



Materials

Anodes, 
Cathodes 

Electrode and 
Cell Fabrication

Performance and 
Safety Tests

 Up to Module 
Level

Batterie SoX-
Diagnostics

Ageing-
Modelling

Post-mortem
Analyses
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Lithium Ion

• Cathodes: HE-

NMC, HV LVP

• Anodes: Sn-alloys

Post-Lithium Ion

• Mg-Ion

• Metal/Air

RPL, Dry room

• Electrode fabrication

• Cell fabrication: 

pouch cells, up to 

max. 10 Ah

Accredited tests

Electrical, environment, 

and safety tests

Comprehensive 

Characterisation

• Physical, chemical 

and electrochemical 

methods

• In situ and operando 

measurements

Analytical methods for 

real-time diagnostics 

• In situ XRD-cell

• Multiplex integration 

in GC/MS

• Vibration-based 

tests 

Our aim: To cover the whole development chain

AIT BATTERY TECHNOLOGIES: RESEARCH AREAS



Electrolyte, Cathode and Anode 

Improvements for Market-near Next-

generation Lithium Ion Batteries

Project Objectives

The objective of eCAIMAN is to bring European 

expertise together for developing a automotive 

battery cell that meets the following requirements:

• Energy density: 270 Wh/kg

• Costs: 200€/kWh

• The cells can be produced in Europe
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ECAIMAN
Consortium

This project is co-funded by the European Union‘s Horizon 2020 program under grant agreement no. 653331



THE AIT BATTERY TECHNOLOGIES TEAM
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THANK YOU!
Dr. Marcus Jahn

12.11.2018


