6XXX-SERIES ALUMINIUM ALLOY WITH HIGH ELECTRIC CONDUCTIVITY FOR EV BATTERY COMPONENTS

Dr. Josef Berneder Josef.berneder@amag.at A3PS-Konferenz Eco-Mobility 2024, November 14th

AL**G** ever

Agenda

1 Introduction conductor materials

- **1.1 Applications**
- 1.2 Comparison of aluminum with copper
- 1.3 Aluminum alloys & manufacturing processes

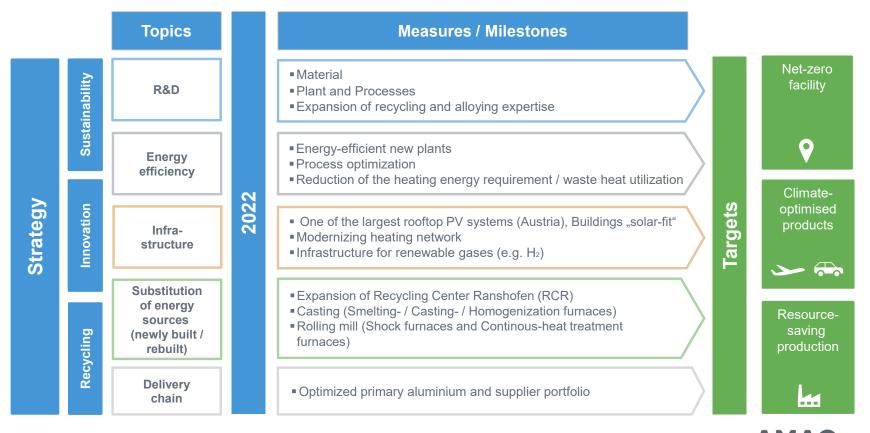
2 Test procedure

- 2.1 Factors for electric conductivity
- 2.2 Manufacturing process of 6xxx grades
- 2.3 Lab trials
- **3 Results and discussion**
- **4** Conclusion

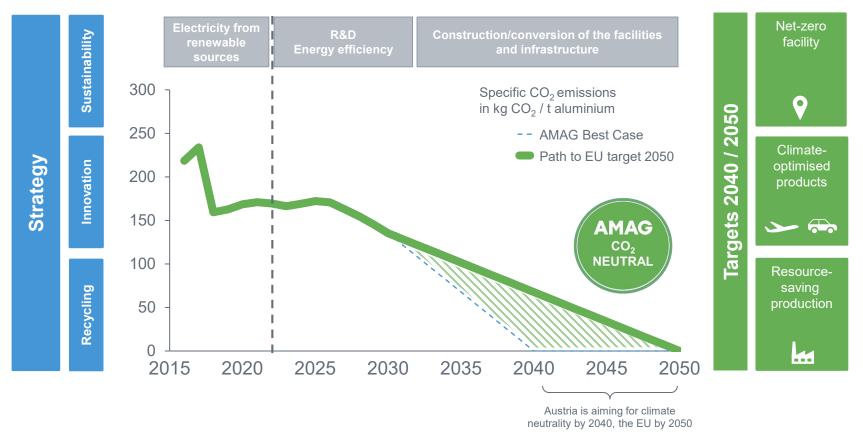
AMAG Profile

20% interest in the Canadian smelter Alouette

Integrated site in Ranshofen, Austria


AMAG components, Germany

Sites


- Ranshofen (Headquarters, Austria): Most modern aluminium rolling mill in Europe
- Sept Iles (Canada): Secured supply of raw materials with its interest in the Alouette smelter
- Übersee, Karlsruhe (Germany): AMAG components (a member of AMAG group since November 2020) is a leading producer of ready-toinstall metal parts for the aircraft and space industry
- Proven strength in reycling
- Growth potential: Rolling capacity of 300 kt with free capacities currently of around 70 kt
- Wide product range with high share of specialty products
- Regional focus Europe: Customer base and primary sales market in Europe is 65 %

The path to a Net-zero AMAG

The path to a Net-zero AMAG

Expansion of one of Austria's largest rooftop photovoltaic systems

(from June 2024 onwards - 120,000m²)

Electricity exclusively for own use by AMAG

PV system

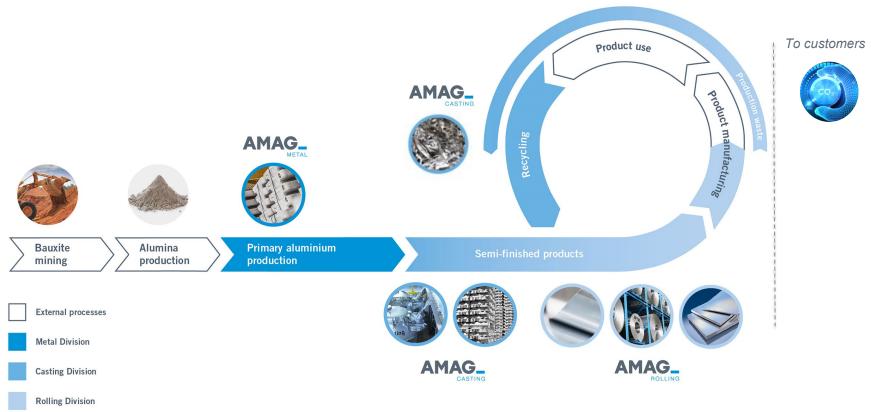
Key facts

Output	Yield
7.5 MWpeak	7.3 GWh
Connected	Energy
load of	requirement
70,000	of
refrigerators	2,000 households

Innovation

Strong customer relationships through innovative products

AMAG's innovation efforts focus, among other things, on:


- The manufacture of products that promote the use of aluminium and its sustainable development (e.g. AMAG AL4[®] ever)
- The new and further development of recycling technologies for the optimal use of materials (e.g. Alloy-to-Alloy recycling)
- Increasing the share of special products for the best customer solutions through process and alloy development

The Aluminium value chain

Uniquely sustainable: cradle-to-gate and closed-loop-system

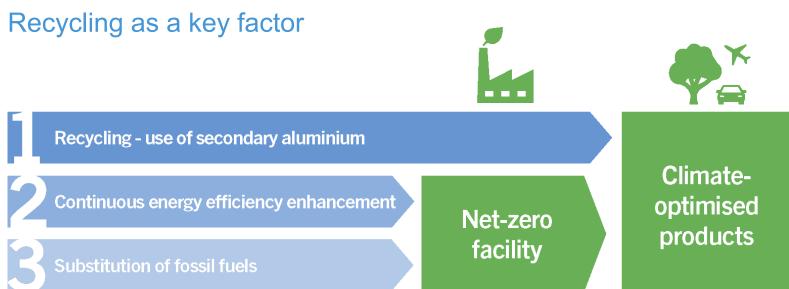
Recycling @ AMAG

AMAG is a leader in recycling

Systematic expansion of the Recycling Center Ranshofen

- Ranshofen: is one of the biggest scrap recyclers at a single site in Europe
- AMAG processes all scrap* types available on the market to create high-quality specialties
- AMAG is certified according to ASI CoC Standard

Most modern scrap sorting plants using LIBS and X-ray technology



*purchased external scrap and recycling scrap from the company's own production

The path to net-zero AMAG (1/3)

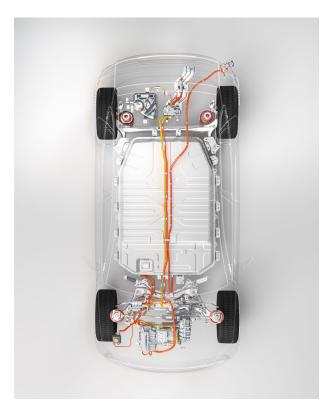
Three levels build upon each other:

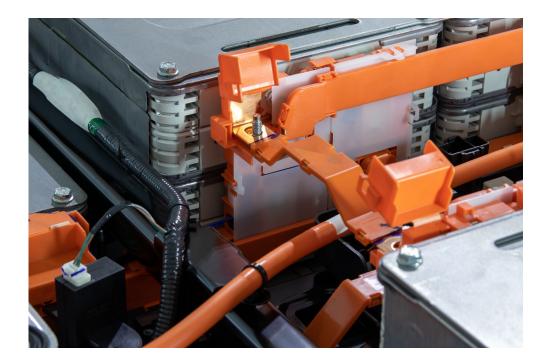
- Recycling substitutes CO₂-intensive production of primary aluminium
- Energy efficiency reduces energy demand
- Substitution of the remaining fossil energy sources with future technolgies

Transparent reporting

Transparency in sustainability is a major focus for us

- Non-financial statement 2022 was published with the annual report on 17.02.2023
- Audit and review of the nonfinancial statement was completed very successfully
- Prospects:
 - Monitoring of targets for 2023
 - Preparation for EU-wide reporting standards according to CSRD*
 - Regular implementation of ratings and certifications




1 Introduction conductor materials

1.1 Applications

Several components within electric vehicles

AL**O** ever

1.1 Applications

Energy transport and storage

Additional tailwind from the energy transition

1.2 Comparison of aluminum with copper

Properties

Disadvantages over copper:

- Aluminum has lower electric conductivity
- Higher cross-sections to transport the same amount of electricity required with similar system resistance
- Oxide layer of aluminum is not conductive
- Lower thermal expansion of copper

Advantages over copper:

- Weight-specific higher electrical conductivity
- Improved strength to weight ratio
- Raw material costs and material availability

2 Test procedure

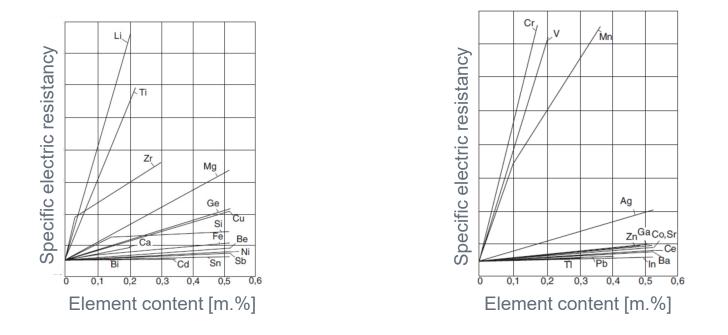
AL**O** ever

2.1 Factors for electric conductivity

Alloy elements have significant influence

Grain size

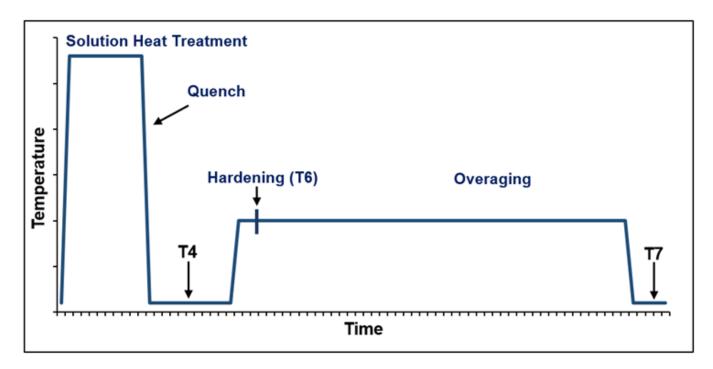
- \rightarrow Coarse grain increases electric conductivity
- \rightarrow Negative impact for bending ability
- Chemical composition
 - \rightarrow Amount of alloying elements and their condition in the structure
 - \rightarrow All solutioned elements hinder the movements of electrons



2.1 Factors for electric conductivity

Alloy elements have significant influence

• Mn, Cr, V and Mg have the largest negative lever for electrical conductivity



Kammer C (2022) Aluminium-Taschenbuch. Aluminium-Verlag, Düsseldorf, p 232-233 Kutner F (1980) Leitwerkstoffe aus Aluminium. Aluminium (56):165/168

2.2 Manufacturing process of 6xxx grades

Condition of the alloy elements Si + Mg characterize the material temper

■ $\alpha_{supersaturated} \rightarrow Cluster \rightarrow Mg$, Si Co-Cluster \rightarrow GP1 zones $\rightarrow \beta$ " (GP2 zones) $\rightarrow \beta' \rightarrow \beta$ (Mg₂Si)

AL 🛾 ever

2.3 Lab trial

Target window

Primary goal: High electric conductivity

Secondary goal: Good processability within customer's production process

Property target window in coordination with customer needs:

- Conductivity
 ≥ 55,2 %IACS (International Annealed Copper Standard)
 ≥ 32 MS/m
- Yield strength ≥ 155 MPa
- Bending angle according ASTM E290 ≥ 135°

2.3 Lab trial

Parameter chemistry and T7 annealing

Test plan:

- Using two slightly different alloy A and alloy B in lab scale
- Findings are implemented in alloy C on a production scale

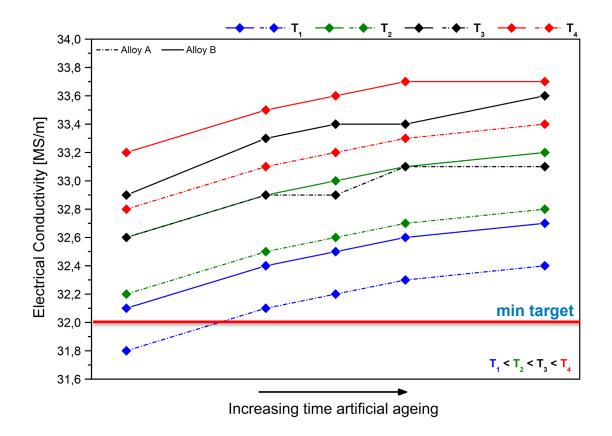
Chemistry EN AW-6101:

	Si [wt.%]	Fe [wt.%]	Cu [wt.%]	Mn [wt.%]	Mg [wt.%]	Cr [wt.%]	Zn [wt.%]	AI [wt.%]
min.	0.30				0.35			Residue
max.	0.70	0.50	0.10	0.03	0.80	0.03	0.10	Residue

Mn content alloy A > Mn content alloy B

T7 annealing:

- Annealing matrix with four temperatures and five different holding times
- 20 annealing variants

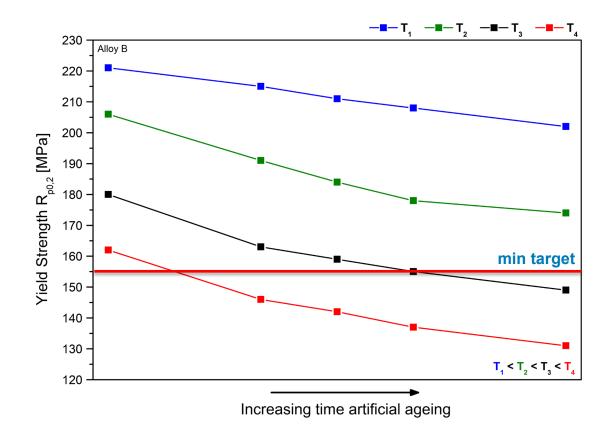


3 Results and discussion

AL 🛾 ever

3 Results and discussion

Electric conductivity – significant higher at alloy B



AL**O** ever

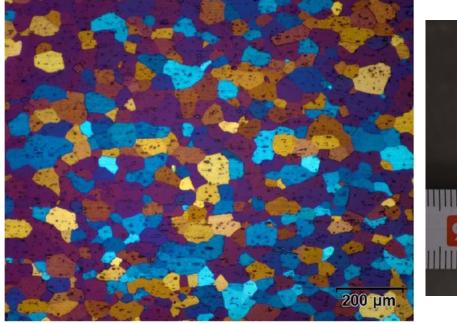
3 Results and discussion

Yield Strength

3 Results and discussion

Transformation in the production process

- Additional reduction of the Mn content for production trial in improved alloy C
- Adjustment of the solution heat treatment process to the goals of the new alloy
- Evaluation of different heating rates between lab tests and production processes for T7 annealing



3 Results and discussion

Testing workability of the material

- Even and slightly grown grain structure with excellent bending performance
- ASTM E290 with banding radius factor N = 1

Conclusion

4 Conclusion

Real challenger for copper in electrically conductive applications

 Chemical composition and the over-aging heat treatment are decisive for generating the necessary mechanical properties

In summary, the new 6xxx Al-Mg-Si alloy achieves the following material properties:

- Electrical conductivity up to 58,1 %IACS (33,7 MS/m),
- Minimum yield strength of 150 MPa,
- Globular grain size of 50 μm,
- Bendability of 180° according to ASTM290 (radius N=1).

AL**U** ever

4 Conclusion

AMAG AL4® 6ZO – Zero Ohm

MECHANICAL PROPERTIES

As delivered in T7: Typical mechanical properties in transverse direction in gauge 3.0 mm.

Rp _{0.2}	Rm	R _{P0.2} /R _m	A _g	A ₅₀	σ
[MPa]	[MPa]		[%]	[%]	[MS/m]
155	190	0,82	6	13	33,7

Bending capability: With the bending radius factor (N) = 1, the bending radius of 180° is successful for the gauge 3.0 mm according to ASTM E290.

- Material currently in various OEM trials
- Equipment capability up to thickness of 8 mm in coil

Thank you very much for you attention!

