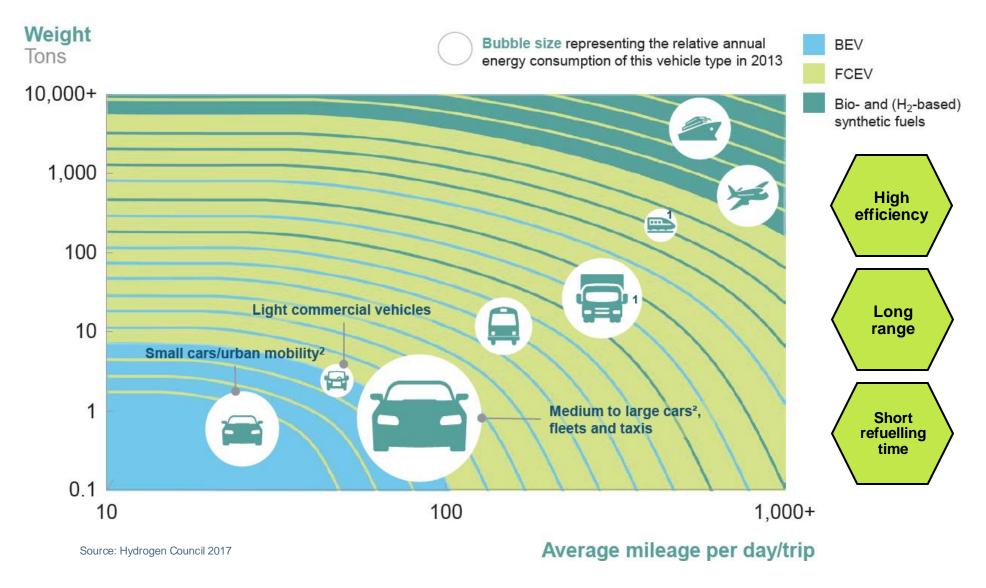


Clean Hydrogen Construction & Mining Machines

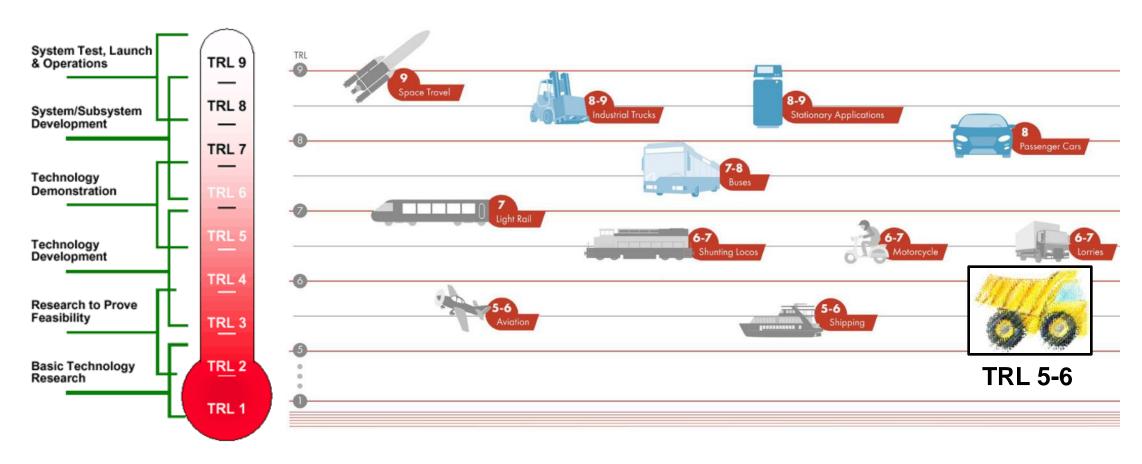
A3PS Eco-Mobility, Vienna 15.11.2024

Martin Aggarwal (HyCentA),

Rainer Schruth (Virtual Vehicle)



H₂ in Mobility



H₂ in Mobility

Technology Readiness Level

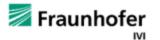
Source: Shell, The Shell Hydrogen Study: Energy of the Future

Overview of FCE Vehicles

Тур	Tractor	Tractor	Tractor	Excavator	Excavator	Excavator	Dump Truck	Dump Truck	Dump Truck	Dump Truck	Dump Truck	Mixer Truck
Company	New Holland	Kubota	Fendt	Terberg Techniek	Komatsu	Hyundai	Weichai	SANY	Anglo American	Volvo	Komatsu	SANY
Maturity Level	Prototype	Prototype	Prototype	Prototype	Concept	Prototype	Prototype	Prototype	Prototype	Prototype	Prototype	Prototype
Presented	2011/2020	2023	2023	2023	2023	2022	2019/2021	2020	2022	2022	n/A	2020
FCS Power	100 kW	74 kW	n/A	50 kW	n/A	n/A	800 kW	n/A	800 kW	100 kW	800 kW	n/A
Battery Capacity	12 kWh	n/A		n/A		n/A		360 kWh	1200 kWh	n/A	1100 kWh	360 kWh
Battery Power	50 kW	n/A	n/A	n/A	n/A	n/A	n/A	n/A	2000 kW	n/A		n/A
E-Motor Power	200 kW	n/A	n/A	n/A	n/A	100 kW	n/A	n/A		n/A	n/A	n/A
FCS Supplier	Nuvera	n/A	n/A	Zepp. solutions	Toyota	n/A	Ballard	REFIRE	Ballard	Powercell	Ballard	REFIRE

HY. COMM Project

Duration: 11/2023 – 11/2026


Funding Program: CETP

Overall Budget: 6.5 M€

Clean H₂ Construction and Mining Machines

- Design of a fuel cell hybrid construction machine for mining applications
- ➤ Test operation and knowledge gain for research and industry in a real application scenario
- Build-up of a hydrogen refuelling infrastructure

HY. COMM Motivation / Challenges / Goals

Functional FC-based demonstrator for mining and construction

Energy-efficient and degradationminimised **operation strategy**

Supporting pre-series development

Providing **knowledge gain** for research and industry

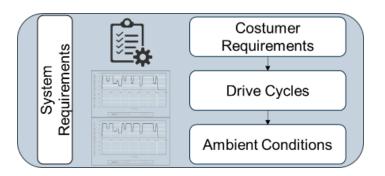
Developing an innovative filter technology for air purification

Solving challenges of thermal and water management

Ensuring reliable refueling for daily use

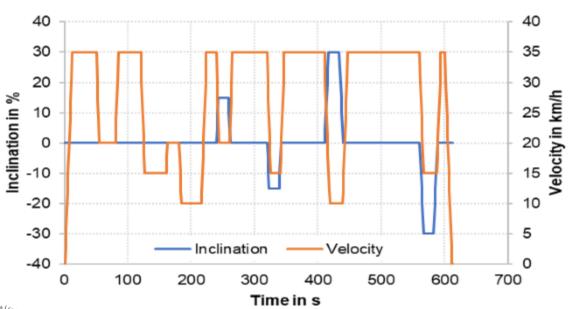
Hydrogen infrastructure powered by renewable energy sources

HY. COMM Methodology / Content

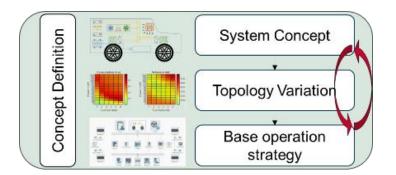


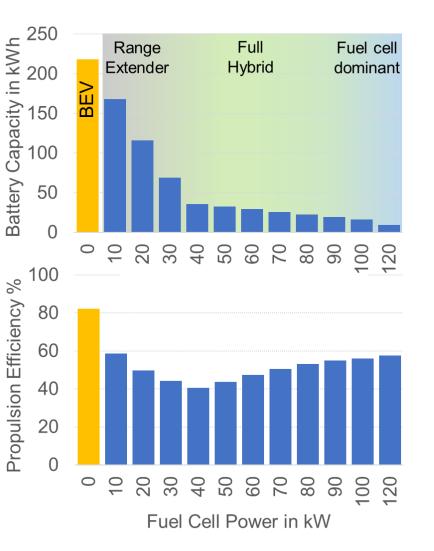
System Requirements **EMS** Development **Concept Definition** Customer **Optimization Drive Cycle** Topology Variation **Operation Strategy** Operation Strategy Requirements Legal Conditions Lifetime Power Agility **Fuel Consumption** Efficiency Energy Torque Operating Management Efficiency Resistances Costs Conditions Minimum Fuel SoC - Level Mass Vehicle Mass Consumption Ambient Inclination Consumption **Current Limits** Conditions Maximum Lifetime

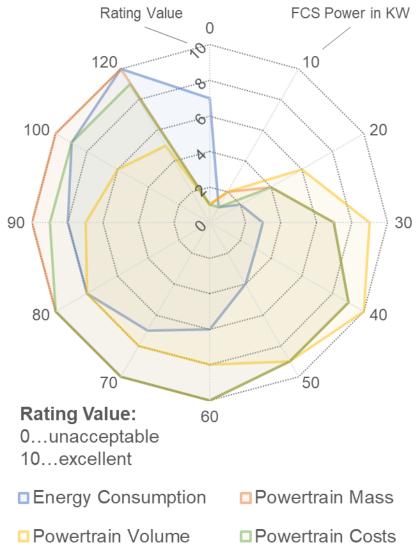
HY. COMM System Requirements



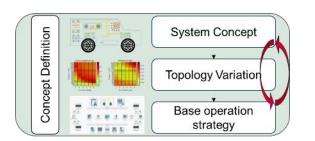
Test vehicle design: 5-seater Pick-up for passenger and material transport

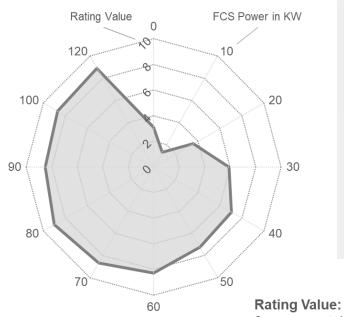

Ambient Temperature	-20 °C to 40 °C
Operating Time / Shift	4 h
Driving Range	100 km
Max. Velocity	35 km/h
Max. Inclination	30 %
Velocity @ Inclination	10 km/h @ 30 %
Curb weight	6500 kg
Payload	1500 kg
Durability	~20 000 h

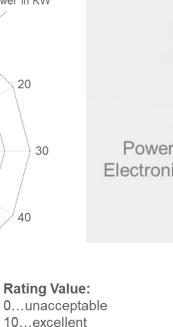



HY. COMM Concept Definition

- Simplified static vehicle simulation
- Base operation strategy
- Topology Variation
- Techno-economic assessment
 - Efficiency
 - Weight
 - Packaging
 - Costs





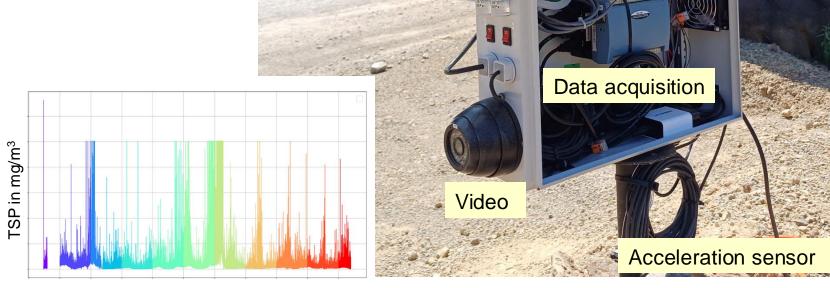


HY. COMM Concept Definition

Fuel Cell System Electric Machine Electric Machine Thermal Management Power **Electronics** Traction Hydrogen Storage Battery System

Traction Battery	30 kWh		
Fuel Cell System	60 kW		

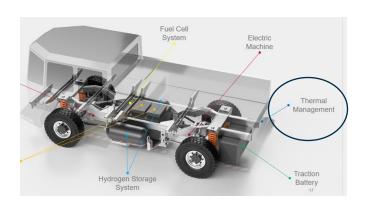
■Weighted Sum

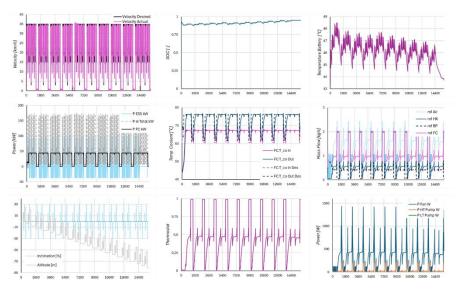

HY. COMM Dust measurement @ Erzberg

PM-Sensor

- ➤ Installation equipment of the dust measurement system at a mine area "Erzberg"
- Measurement data acquisition directly on the tramline of the dump trucks
- 1st series of measurements mid-August to end of September

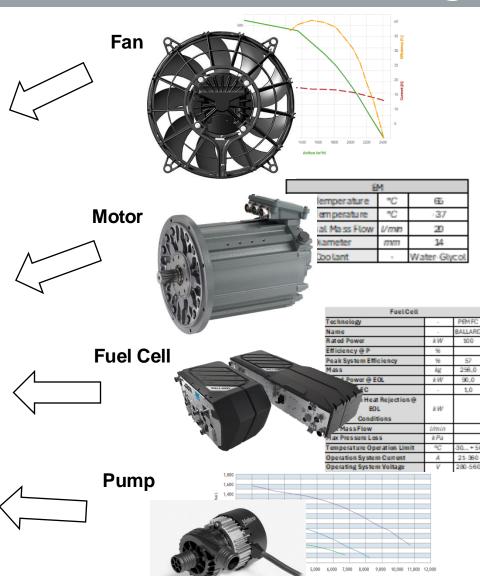
Activated charcoal_


(gas sampling)

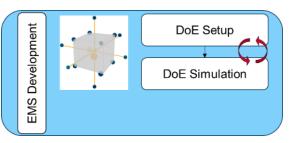


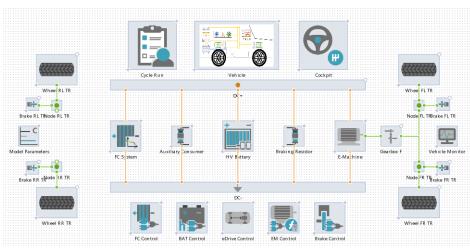
HY. COMM Thermalmanagement

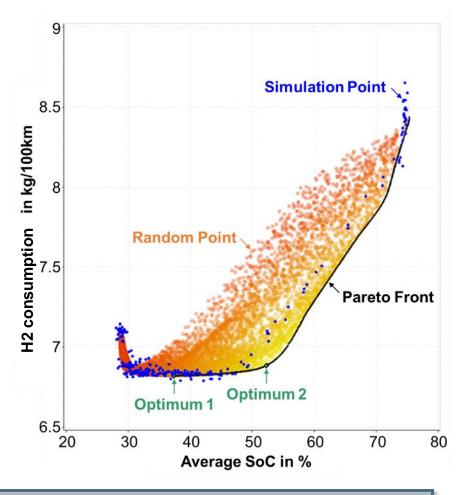
- Design of 2 coolant loops
- Thermal Management Package in the rear of vehicle (~130x35cm)



Simulation of Sequence Underground Cycle


+ Others (Battery....)


HY. COMM EMS Development



DoE Simulation

- Optimization for consumption and life time of fuel cell and battery
- Rule based operation strategy

"Off"	LoFC = 0 %	{SoC > 80 %}
"Stop"	<i>LoFC</i> = 20 30 %	$\{v = 0 \frac{km}{h} \mid SoC = 20 \dots 80 \%\}$
"Low Load"	<i>LoFC</i> = 20 40 %	$\{v > 0 \frac{km}{h} \mid SoC = 20 80 \% \mid \alpha < 5 30 \%\}$
"Medium Load"	<i>LoFC</i> = 30 75 %	$\{v > 0 \frac{km}{h} \mid SoC = 20 80 \% \mid \alpha < 25 80 \% \}$
"High Load"	LoFC = 70 100 %	$\{v > 0 \frac{km}{h} \mid SoC = 20 80 \%\}$
"Full Load"	<i>LoFC</i> = 100 %	{ <i>SoC</i> < 20 %}

Base operation strategy: 8.9 kg/100km

~ -23%

Opt. 1: 6.8 kg/100km; SOC: 37% Opt. 2: 6.9 kg/100km; SOC: 54%

- Procurement of components and systems
- Experimental testing on stack and system level
- Build-up of a demonstrator vehicle
- Real world testing of test vehicle under mining conditions

This project has received funding from the Clean Energy Transition
Partnership programme in the transition initiative 3. This research was
funded by CETPartnership, the Clean Energy Transition Partnership under
the 2022 joint call for research proposals, co-funded by the European
Commission (GA N°101069750) and with the fundin
on https://cetpartnership.eu/fundingagencies-and-call-modules.

Contact

HyCentA Research GmbH Inffeldgasse 15 A-8010 Graz

Phone: +43 316 873 9500

office@hycenta.at

www.hycenta.at

Virtual Vehicle Research GmbH Inffeldgasse 21a A-8010 Graz

rainer.schruth@v2c2.at

