

Co-Optimization of Fuels and Engines

John Farrell (National Renewable Energy Laboratory)
A3PS Conference – Eco-Mobility 2016
October 17, 2016

Goal: better fuels and better vehicles sooner

Fuel and Engine Co-Optimization

- What <u>fuel properties</u> maximize engine performance?
- How do engine parameters affect efficiency?
- What <u>fuel and engine</u>
 <u>combinations</u> are sustainable,
 affordable, and scalable?

30% per vehicle petroleum reduction via efficiency and displacement

Light duty fuel consumption (billion gallons/year)

source: EIA 2014 reference case

National goal: 80% reduction in transportation GHG by 2050

Parallel efforts are underway

Thrust I: Spark Ignition (SI)

Thrust II: Advanced Compression Ignition (ACI) kinetically-controlled and compression-ignition combustion

Low reactivity fuel

Range of fuel properties TBD

High reactivity fuel

Applicable to

light, medium, and heavy-duty engines hybridized and non-hybridized powertrains

Six integrated and coordinated teams

Fuel Properties

Modeling and Simulation Tools

Life-cycle, technoeconomic, and feedstock analyses

Market Transformation

Los Alamos

Leveraging expertise and facilities from 9 U.S. National Labs and (starting in 2017) leading universities

Integrated
multi-lab teams
with significant
external
stakeholder
engagement

13

Light and heavy duty vehicle manufacturers

10

Oil companies/refiners

8

Biofuel companies

4

Regulatory agencies

2

End consumer organizations

R&D and commercialization targets

Major Co-Optima Challenges

Co-Optima Technical Challenges

What fuels do engines want?

Fundamentally different combustion dynamics require different fuel properties

Engine performance merit function

- Merit function being developed and refined
 - Are these the right fuel properties?
 - Are their effects properly quantified?
- We'll test the central fuel hypothesis using biofuels with different structures / functional groups than petroleum fuels

HoV can be important for DI at high intake temperatures

Upstream injected (UI) 100 RON, $S \approx 11$ fuels have higher peak IMEP at constant CA50 than iso-octane (RON 100, S = 0), and HoV has little effect (S = 0) is dominant)

- Direct injection (DI) of iso-octane has HoV benefit, but less than S ≈ 11 effect
- DI of S ≈ 11 fuels also has HoV benefit, which increases with manifold temp.

What fuels can we make?

Fuel selection criteria ("decision funnel")

Fuel candidate blendstock evaluation

Fuel candidates will be evaluated as blendstocks in petroleum-based blendstocks

90% petroleum BOB (blendstock for oxygenate blending)

Today's Gasoline

Thrust I Fuel

Thrust I blendstock

Petroleum BOB (blendstock for oxygenate blending)

Fuel property database

Database of critical fuel properties of bio-derived and petroleum blendstocks > 400 molecules/mixtures (at present) 25 database fields for fuel properties Includes capability for fully blended fuels

Data from experiment and literature or calculated/estimated (where needed)

Shared resource for team and public

Identification of Thrust I candidates

Tier I criteria

Melting point/cloud point below -10°C Boiling point between 20°C and 165°C Measured or estimated RON ≥ 98 Meet toxicity, corrosion, solubility, and biodegradation requirements

> 40 promising bio-blendstocks from many functional group classes

Not final – this is an iterative process!

Current Thrust I blendstock candidates

Alcohols	Aromatics	Ethers			
Ethanol (reference only)	1,3,5-trimethylbenzene (mesitylene)	Methoxybenzene (anisole)			
Methanol	Vertifuel (60%+ aromatics)				
n-Propanol	Fractional condensation of sugars + upgrading	Furans			
2-Propanol	ethanol-to-gasoline 2-Methylfuran				
1-Butanol	Catalytic fast pyrolysis	2,5-Dimethylfuran			
2-Butanol	Catalytic conversion of sugars	alytic conversion of sugars 40/60 Mixture of 2-methylfuran/2,5-			
	dimethylfuran				
2-Methylpropan-1-ol (isobutanol)					
2-Methylbutanol	Esters	Ketones			
2-Methyl-3-buten-2-ol	Acetic acid, methyl ester (methyl acetate)	2-Propane (acetone)			
2-Pentanol	Butanoic acid, methyl ester (methyl butyrate)	2-Butane (methylethylketone; MEK)			
Guerbet alcohols	Pentanoic acid, methyl ester (methyl pentanoate)	2-Pentanone			
	2-Methylpropanoic acid, methyl ester	3-Pentanone			
Alkanes	2-Methlybutanoic acid, methyl ester	Cyclopentanone			
Isooctane	Acetic acid, ethyl ester (ethyl acetate)	3-Hexanone			
2,2,3-trimethyl-butane (triptane)	Butanoic acid, ethyl ester (ethyl butanoate)	4-Methyl-2-pentanone (Methylisobutylketone)			
	2-Methylpropanoic acid, ethyl ester	2,4-Dimethyl-3-pentanone			
Alkenes	Acetic acid, 1-methylethyl ester	3-Methyl-2-butanone			
Isooctene (2,4,4-trimethyl-1-pentene)	Acetic acid, butyl ester (butyl acetate)	-			
	Acetic acid, 2-methylpropyl ester	Multifunctional Mixtures			
	Acetic acid, 3-methylbutyl ester	Methylated lignocellulosic bio-oil			
	Anaerobic acid fermentation plus				
	esterification mixture				

What will work in the real world?

Which options are economical, scalable, sustainable, and compatible?

25

Assessing Candidate Viability

Technology Readiness

Environmental

SOT - fuel production

SOT - vehicle use

Conversion TRL level

Feedstock sensitivity

Process robustness

Feedstock quality

of viable pathways

Carbon efficiency

Target yield

Life cycle GHG

Life cycle water

Life cycle FE use

Target Cost

Needed cost reduction

Co-product economics

Feedstock cost

Alternative high-value use

Uncertainty

Regulatory requirements

Geographic factors

Political factors

Infrastructure compatibility

Analysis of 20 representative candidates

26	

Alcohols		Esters		Ketones	
0	Ethanol (reference) Methanol	9	Acetic Acid, methyl ester (methyl acetate)	14 15	2-butanone 2-pentanone (methyl
2	1-butanol 2-methyl-butanol	10	Acetic Acid, ethyl ester (ethyl acetate)		ethyl ketone)
4	2-butanol	11 Acetic Acid, butyl ester		Aromatics	
5	2-methylpropan-1-ol		(butyl acetate)	16	Vertifuel (60% aromatics)
6	Guerbet alcohol mixture	12	Anaerobic acid fermentation	17	Fractional condensation of
ΑI	Alkanes		and esterification mixture	18	sugars + upgrading
			Furans		Methanol-to-gasoline
7	7 2,2,3-trimethylbutane				Catalytic fast pyrolysis
Al	Alkenes		2,5-dimethylfuran/ 2-methylfuran mixture	20	Catalytic conversion of sugars
8	Iso-octene				

Integrated analysis tools and approach

Assessing Candidate Viability

How do we co-optimize?

Identifying the best options, subject to many constraints

Approach

Database: fuel properties, sustainability, affordability, scalability, infrastructure, and retail attributes

H₂O consumption = b
Viable routes > c
Feedstock cost < d
Pipeline compatibility = e
Tech Readiness Level > f
Energy density > g
Biodegradability > h

Scenario
Constraints

 $\Delta GHG = a$

166

"Optimizer"

Engine/vehicle merit function

Optimal fuel blend formulations

Need to explicitly account for uncertainty

Numerically optimized merit function

