



### E.-Mobility Lighthouse Projects - Results of VECEPT and outlook on eMPROVE



Dr. Theodor SAMS (AVL), Dr. Michael NÖST (IESTA)

10. Nov. 2015, A3PS Conference Vienna



10.11.2015 Slide 1 VECEPT / eMPROVE

### E.-Mobility Flagship Project VECEPT



**VECEPT – Vehicle with Cost Efficient Powertrain** 

#### **Targets:**

- □ Development and testing of a PHEV demonstrator (volume model concept for the global market):
  - All-purpose ability of the vehicle,
  - Competitive performance, production cost and CO<sub>2</sub> reduction
  - Equipped with a newly developed drivetrain system, cost-efficient charger,
  - Next generation of battery technology,
  - Optimized thermal management incl. HVAC strategy,
  - Minimum AER of 30km and highest efficiency in all operation modes
- Investigation of BEV and PHEV in mixed fleets:
  - Novel and sustainable mobility concept for mixed fleets
  - Generic algorithmic toolset for strategic fleet management
- Installation and operation of charging systems with focus on PHEV



10.11.2015 Slide 2 VECEPT / eMPROVE

### E.-Mobility Flagship Project VECEPT



#### **VECEPT – Vehicle with Cost Efficient Powertrain**

• **Budget**: 7.042.549,- EUR, Funding: 2.803.800,- EUR

• **Duration:** 02.07.2012 – 01.12.2015

Management: Konsortialleiter: AVL List GmbH, Projektmanagement: IESTA

Partner:









Fluidtime
Design Software Service



#### E-MOBILITY PROVIDER AUSTRIA











10.11.2015 Slide 3 VECEPT / eMPROVE

# Flagship Project VECEPT All Purpose Cost Efficient Plug-In Hybridized EV





Work package 1
Vehicle Components & Integration

Work package 2
Enhancement of Energy Efficiency





# VECEPT Competitive investigation of Serial Hybrid Efficiency







**Serial mode (best point):** battery and generator deliver energy for electric propulsion system, ICE and generator deliver average required energy by an alternating operation (on/off) and are always operated in best efficiency point

Advantage: ICE operation best efficiency, low complex.

Disadvantage: energy conversion losses plus battery charge /discharge losses. Constant ICE

operation (NVH)

10.11.2015 Slide 5 Source: AVL

# VECEPT Engine development for low CO2 Emissions





### 200g/kWh Demonstrator



Source: AVL

10.11.2015 Slide 6

# VECEPT Engine development for low CO2 Emissions





# VECEPT Engine development for low CO2 Emissions







#### **FUNCTIONAL REQUIREMENTS**

- Pure battery electric driving forward and reverse using the integrated e-motor.
- <u>Electric vehicle launch</u> in conventional operation mode





- <u>Electric boost & Recuperation</u> to support the ICE and transmission shifting.
- Impulse start functionality for the ICE (for vehicle standstill / very low speed an additional conventional 12V starter needed)











10.11.2015 Slide 9 VECEPT / eMPROVE



Lepelletier planetary gear set with the e-motor linked to an additional ring gear of the modified Ravigneaux gear set

- 7 transmission operation modes
  - 2 torque-split eCVT modes
  - 2 transmission speeds for electric driving
  - 3 transmission speeds for ICE operation
- compact design and low number of partsI = 350mm, m = 90kg (with EM)
- three shift elements plus C0 clutch with multiple functionalities of brakes and clutches
- Major interface specification:
  - ICE: 1.2L IL3 TGDI P<sub>max</sub> = 66kW@3500min-1
  - E-motor: induction machine P<sub>10sec</sub> = 65kW, M<sub>10sec</sub> = 140Nm





10.11.2015 Slide 10 VECEPT / eMPROVE

ICE

# VECEPT Drivetrain Quick View









Source: AVL



### **Integration - Vehicle Build up**







10.11.2015 Slide 12 VECEPT / eMPROVE



### **Integration - Vehicle Build-Up**

Demo Vehicle Build-Up is finished

The calibrated demo vehicle will be available of December 2015

Demo at CTI 2015 in Berlin









virt. Base
MT, 30kmAER
125gCO<sub>2</sub>/km

Base\*
DCT 103kW
119gCO<sub>2</sub>/km

#### PT: Powertrain:

- AVL "VECEPT" 7-mode transmission with integrated EM
- AVL ICE with Miller combustion cycle, cooled LP EGR, low friction design, beltless engine

Rec/ED: Recuperation / Electric Drive

Res: Vehicle drive resistance improvement (est.)

Aux: Low power LV consumers

\* base vehicle with DCT transmission
 103kW → 119gCO2/km





### **WP3 User Behaviour / Fleetmanagement**





10.11.2015 Slide 15 VECEPT / eMPROVE



### WP3 User Behaviour / Fleetmanagement

#### Scenario in WP3 VECEPT Vehicle in fleet operations

Corridor Vienna-Graz Fleet composition (start): 7 conventional vehicles

Solution 1 (final):

+4 BEV

+4 PHEV

Solution 2 (final):

+3 BEV

+2 PHEV











Slide 16 VECEPT / eMPROVE



### **WP4 Infrastructure**





10.11.2015 Slide 17 VECEPT / eMPROVE



#### **WP4 Infrastructure**

- 4 of 4 Fast Charging Stations implemented
  - Raststation Dobl-Kaiserwald
  - Wiener Neustadt
  - Raststation Schottwien
  - Raststation Sebersdorf
- All tests are finished
- Charging data is collected for testing and evaluation in WP3



10.11.2015 Slide 18

# VECEPT !

#### **WP4** Infrastructure



### large\_green

= FC in operation

### large\_blue

= AC in operation



### eMPROVE

### Innovative solutions for the industrialization of EVs



#### **Outlook on eMPROVE**

eMPROVE aims at innovative solutions for the **industrialization of electrified vehicles**, increasing both energy and cost efficiency, with particular focus on possibilities for future industrial mass production.

- CO<sub>2</sub> Reduction
- Cost Reduction / Efficiency
- Usability, Safety and Comfort
- Highest Added Value for Austrian Economy
- High International visibility





10.11.2015 Slide 20 VECEPT / eMPROVE

### eMPROVE Innovative solutions for the industrialization of EVs.



#### **USPs of eMPROVE**

- Focus on mass production from requirements to product
- Focus on recycling of environmentally critical components of the storage and energy system
- Design of intelligent battery housing concept
- Second Life Cycle Instructions for batteries
- Demonstrators for PHEV (overall system) and modularized battery (component level)



10.11.2015 Slide 21 VECEPT / eMPROVE

### **eMPROVE**

#### Innovative solutions for the industrialization of EVs



#### **Consortium of eMPROVE**

























This project is funded by the Climate and Energy Fonds and realized in the programme "Flagship projects of electro mobility".

#### **Project Data**

Duration: 1 Oct 2015 - 30 Sept 2018

Consortium: 12 European partners

Overall Budget: 6.7 Mio €

#### Contact

Project coordinator: IESTA

Dr. Michael Nöst

emprove@iesta.at









Dr. Theodor SAMS (AVL), Dr. Michael NÖST (IESTA)

10. Nov. 2015, A3PS Conference Vienna



10.11.2015 Slide 23 VECEPT / eMPROVE