U.S Department of Energy Hydrogen and Fuel Cells Program

2015 Annual Merit Review and Peer Evaluation Meeting

Crystal City, VA

June 8, 2015

Dr. Rajesh Ahluwalia¹ and Dr. Sunita Satyapal²

¹Argonne National Laboratory ²U.S. Department of Energy

Eco-Mobility 2025 Plus

Vienna, Austria November 9-10, 2015

S. Satyapal, "U.S Department of Energy Hydrogen and Fuel Cells Program," 2015 Annual Merit Review and Peer Evaluation Meeting, Crystal City, VA, June 8, 2015. Retrived from http://www.hydrogen.energy.gov/pdfs/review15/01_satyapal_plenary_2015_amr.pdf.

FCEVs are on U.S. Roads Now!

Recently Announced Publicly

Available for commercial sale in the US during late 2015

Toyota Mirai Fuel Cell Vehicle

~10 public retail H₂ stations 100 stations planned in CA Plans underway in Northeast, Hawaii

Now Leasing...

In Auto Shows...

OEMs bringing fuel cells vehicles to showrooms and driveways.

Toyota, Hyundai, Honda, GM, Daimler, Ford, Nissan, BMW, VW, and others!

Hydrogen & Fuel Cells Budget

	FY 15	FY 15	FY 16	
Key Activity	(\$ in thousands			
	Request	Approp.	Request	
Fuel Cell R&D	33,000	33,000	36,000	
Hydrogen Fuel R&D ¹	36,283	35,200	41,200	
Manufacturing R&D	3,000	3,000	4,000	
Systems Analysis	3,000	3,000	3,000	
Technology Validation	6,000	11,000	7,000	
Safety, Codes and Standards	7,000	7,000	7,000	
Market Transformation	3,000	3,000	3,000	
NREL Site-wide Facilities Support	1,700	1,800	1,800	
Total	\$92,283	\$97,000	103,000	

Office	FY 2015
EERE	\$97M
Basic Science ²	~\$20M
Fossil Energy, SOFC	\$30M

FY 2015 DOE Total: **~\$150M**

Number of Recipients funded from 2008-2015		
Industry	>110	
Universities	>100	
Laboratories	12	

More stable R&D funding requests and appropriations in recent years > 20 new projects including 11 new Incubator projects (2014-2015)

¹Hydrogen Fuel R&D includes Hydrogen Production & Delivery R&D and Hydrogen Storage R&D ²Estimated from FY14 appropriation

DOE Activities Span from R&D to Deployment

2.

Research & Development

Demonstration

Cost Reductions

- 50% for fuel cell systems
- 5x less platinum
- > 2x increase in durability
- 80% for electrolyzers
 - \$124/kW in 2006

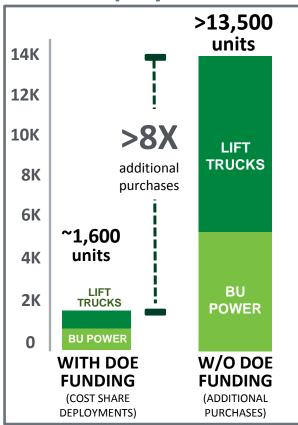
\$55/kW in 2014* at high volume

*\$280/kW low volume

FCEV Demo

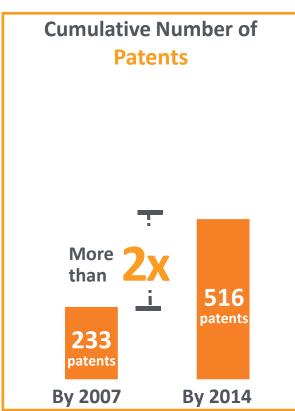
• >215 FCEVs, 30 stations, 5.7M miles traveled

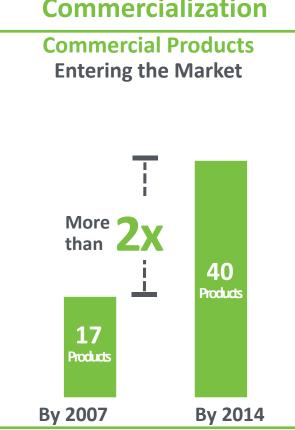
World's first tri-gen station

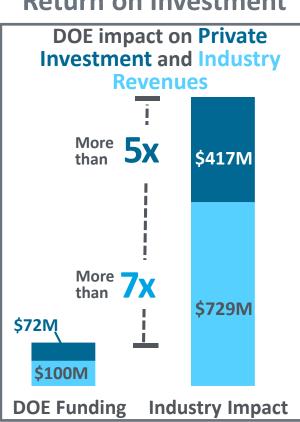

Forklifts, back-up power, airport cargo tugs, marine APU, buses, mobile lighting

Savings from Active Project Management

More than


last


DOE Impact - H₂ and Fuel Cells



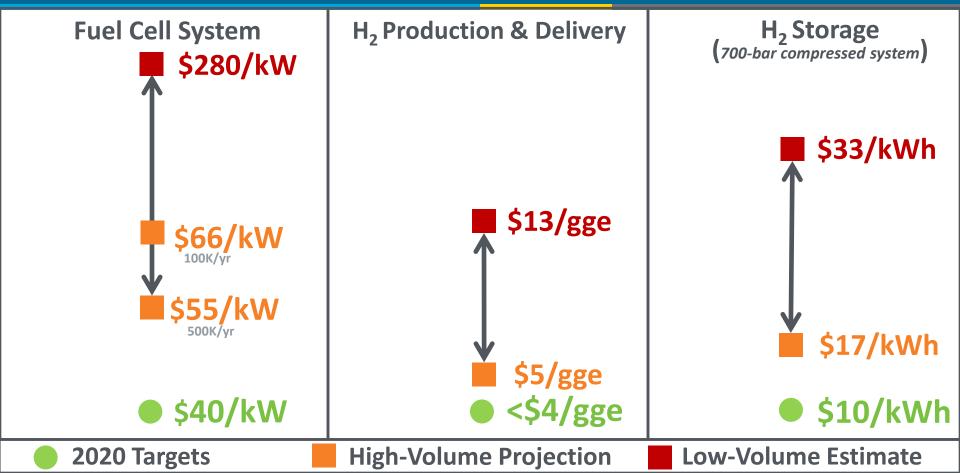
Jobs from commercial products and ARRA

1,400 jobs created or sustained

Commercial Products - Examples

Hexagon Lincoln's TITAN tube trailers

Plug Power GenDrive FCs



3M Cathode Catalysts

Proton's PEM Electrolyzer

DOE Cost Targets and Status

Key Challenges- Examples

- PGM loading
 - Catalyst and membrane durability
- Electrode performance and durability
- Efficiency and Reliability
- Feedstock and Capital Costs
- Compression, Storage and Dispensing (CSD) Costs

conversion

Composite/resin materials

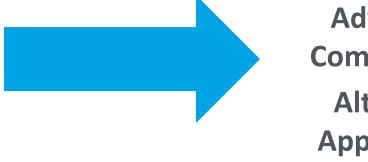
Carbon fiber precursors and

6/15/2015

- Composite/resin materials
- BOP and assembly costs

Techno-Economic Analysis Guides R&D Portfolio

Bipolar Plates
Membranes
BOP
MEA
Frames/Gaskets
GDLs



Low and Non PGM Catalysts, Alkaline

H₂ Station

Storage Cooling Dispensing Other

Focusing on...

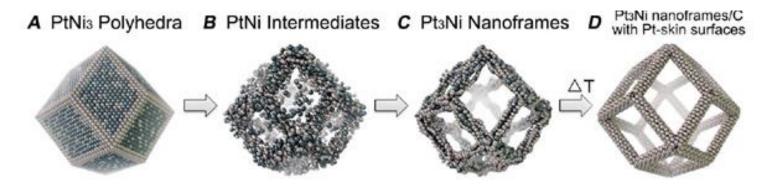
Advanced Compression Alternate Approaches

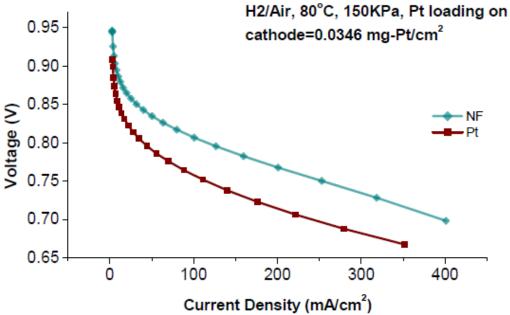
Membranes

1₂ Storage

BOP/Assembly Other processing Resin

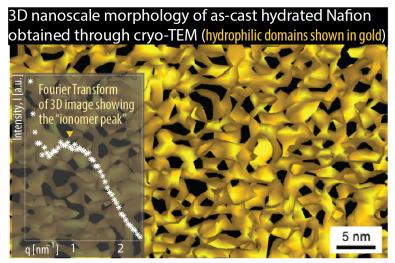
Low Cost Carbon
Fiber (CF)


Long term Materials


Approaches

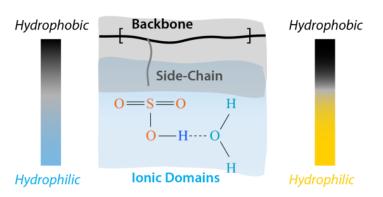
Highlights

Fuel Cell Highlights: Nanosegregated Catalysts

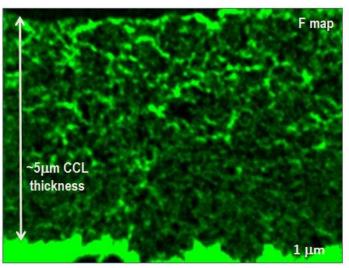

3X in mass activity vs. Pt/C (.035 mg)

V. Stamenkovic, P. Yang, D. Myers, and coworkers, ANL, LBNL, LANL Collaboration with BES

Nanoframe catalysts showed 3X mass activity of Pt/C in low-loaded MEA


Fuel Cell Highlights: Advancing Capabilities

First Direct Imaging of 3D Morphology of Nafion


F.I. Allen, L.R. Comolli, A. Kusoglu, M.A. Modestino, A.M. Minor, A.Z. Weber, *ACS Macro Letters*, 4 (2015) 1-5 | DOI: 10.1021/mz500606

Phase-Separation with Hydration

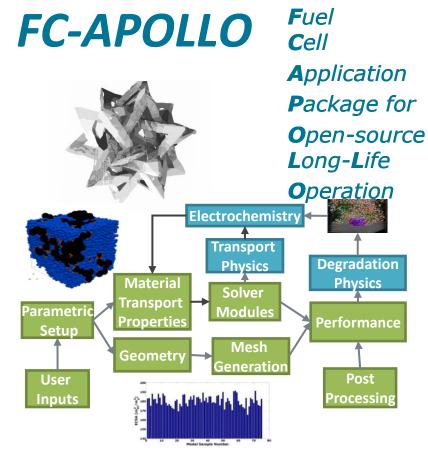
A. Weber et al., LBNL

First Visualization of Ionomer Distributions

Ionomer distribution (Fluorine X-ray map) across full thickness of 5mm cathode catalyst layer (CCL) can be imaged

10-fold decrease in collection times

Developed Open-source application package for simulation of PEMFC performance and durability


Includes Pt dissolution & carbon corrosion

Source code available via Source Forge at:

www.sourceforge.net/projects/fcapollo

Tutorial: June 10, 4:15-6PM Gateway Salon J&K

Introduction to model, physics and reaction kinetics, the open source release, methods for access and use, and a general demonstration

D. Harvey, et al., Ballard

Catalyst
Specific Power
6.5 kW/g_{PGM}

Hydrogen Production & Delivery Highlights

Fuel Cell Technologies Office | 15

NSF/DOE MOU

Engineering Directorate
Division of Chemical, Bioengineering, Environmental, and Transport
Systems (CBET)

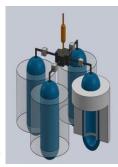
NSF 14-511: NSF/DOE Partnership On Advanced Frontiers in Renewable Hydrogen Fuel Production via Solar Water Splitting Technologies

New Projects in Solar/High T Water Splitting Joint with NSF

- The University of Toledo, Yanfa Yan
- Stanford University: Thomas Jaramillo
- Rutgers University: Charles Dismukes
- The University of Colorado at Boulder: Charles Musgrave

Computationally screened >1000 new compounds since 4/2015

Identified ~200 new redox materials compatible with high-efficiency flowing particle STCH reactor design


Steel-Concrete

High-Pressure

Composite Vessel

Hydrogen Storage

(SCCV) for Stationary

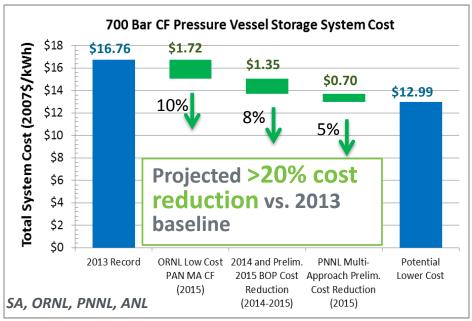
Exceeded DOE 2015 cost target (\$900/kg) for stationary gaseous hydrogen storage by > 20%.

CU Boulder

H₂ from Renewables Cost:

\$6.80/gge*

* From \$8.00/gge (2011, dispensed, untaxed)



On Track

High volume, projected cost

Hydrogen Storage Highlights

Cost Reduction of 700 bar H₂ Storage Systems

 Launched 5 new storage materials projects

Class I Forklift with Fuel Cell and Metal Hydride System

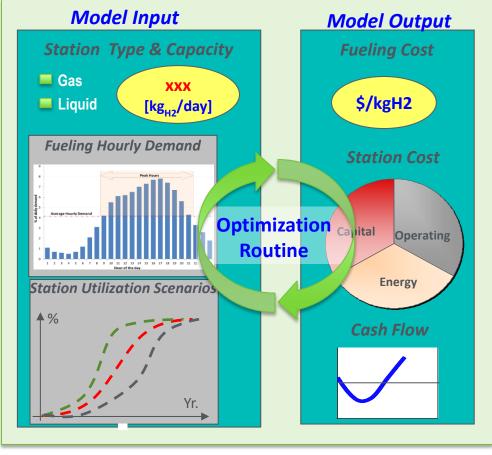
Developed metal Hydride H₂ Storage for Forklifts (SBIR Phase II) to overcome cost and high P fueling issues (fuels at < 60 bar)</p>

Hawaii Hydrogen Carriers LLC, SNL, SRNL, Hydrogenics, URH2, Greenway Energy

Reduce cost of 700-bar tanks:

15% cost reduction*

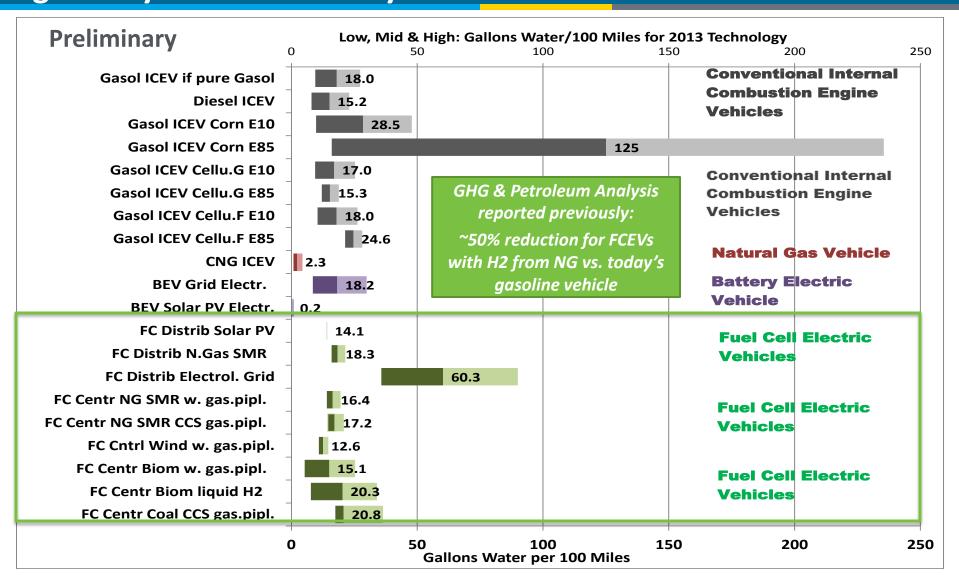
* vs. \$17/kWh (baseline)


On Track

High volume, modeled projected cost

Modeling and Online Tool Development for Stations

Fuel Cell Technologies Office | 17


H2FAST- H2 Financial Analysis Scenario Tool Web-based online calculator (NREL)

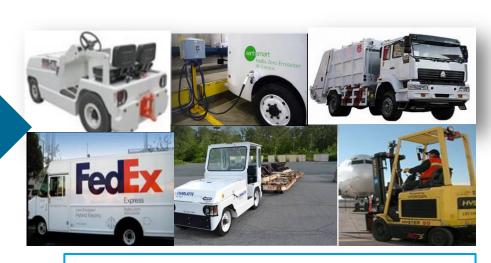
HRSAM- Hydrogen Refueling Station Analysis Model (ANL)

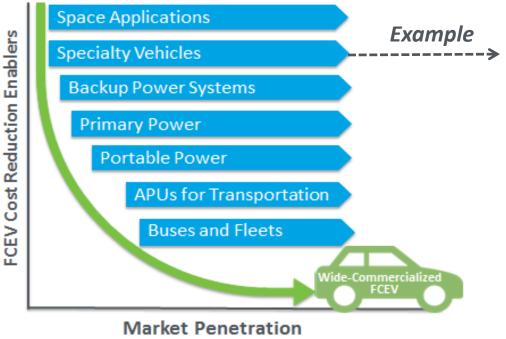
Station cost, optimized configurations and cash flow & ROI analyses to optimize financial viability of station options

Life Cycle Analysis of Water Use for Light Duty Vehicle Pathways

Fuel Cell Technologies Office | 18

Numbers represent mid-range values, the left half-bar the low range, and the right half-bar the high range- DOE FCTO, VTO, BETO, ANL


DOE as Catalyzer of Early Markets


Early Markets enable:

- Fuel cell cost reduction
- Robust supply base
- Emerging Infrastructure

Customer acceptance

Early Market
Application
Examples

World's First Fuel Cell Cargo Trucks at Memphis International Airport

facebook Po

Post Stats:

More 180 shares than 240 likes

Over 45,000 people reached

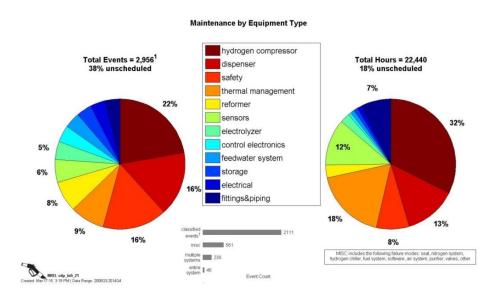
World Record Set by Fuel Cell Electric Bus

AC TRANSIT FLEET

AC TRANSIT BUS

Operated for more than **19,500** hours

With **ZERO failure**



FTA Funding and Collaboration with DOE- NREL Data collection

Fuel Cell Engine Demonstrated Reliability for Transit Bus Fleet

- CSULA- First in U.S. to receive seal of approval for sale of H₂ Jan 2015
- New data collection projects with OEMs (Toyota, Hyundai, Honda, Nissan, Daimler, GM)
 - 2.4 million miles
 - >50% of FCEVs on road showed 5055 mpgge fuel economy
- Determined causes for >2,900 maintenance events
- Developed safety and contaminant sensor technologies at LANL
- Developed and tested fuel cell power system for pier-side and auxiliary sea vessel power

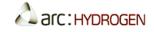
Determined contaminant source (siloxane) & identified potential substitutes (e.g. PTFE-based grease can be suitable replacement with minimal effects)
Fuel cell system contaminants material screening database (NREL):

www.nrel.gov/hydrogen/system_contaminants_data/

H₂USA to address H₂ Infrastructure Challenges

Fuel Cell Technologies Office | 22

H₂USA



*Representative sample of member logos

Hydrogen Fueling Infrastructure Research Station Technology

Leveraging Expertise of National Labs

In Support of

H2 USA and tasked to deliver:

Outstanding Partnership Award

By the Federal Laboratory Consortium (FLC) for efforts toward deployment of hydrogen fueling infrastructure

Reference Station Design

✓ Report Delivered with DetailedStation Designs and Cost Estimates

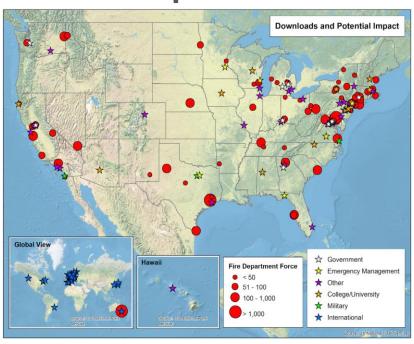
Fuel Contaminant Detection

✓ Market Survey and Gap Analysis Complete

HyStEP Device

✓ Design Complete - Currently Under Construction

- H₂ Station Equipment Performance
 Device
- H₂First Inaugural Task
- HyStEP will help reduce time required to place H₂ stations in service


DOE's H₂FIRST project supports H2USA goals to address infrastructure

H2Tools

Consolidated safety and knowledge resources into a central location, alongside newly added functionality and content

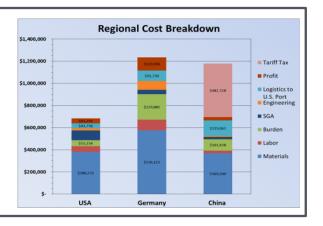
Safety Training for First Responders

Tracking interest in first responder training resources across the country, including along the northeast corridor

PNNL, CaFCP

PNNL

Going Forward



Fuel Cell Technologies Office | 27

Global Competitiveness Analysis including:

- Global Cost Breakdown
- Design for Manufacturing
- Value Stream Mapping

Integrated Network of Regional Technical Centers

Located at

- 1. East Coast (CCAT)
- 2. Midwest at the OFCC
- Central States at NREL's National Fuel Cell Technology Evaluation Center
- 4. West Coast (UC Irvine)
- Activities (Examples)
- Hold supply chain exchanges
- Promote cooperation between suppliers & standardization of component specs

Fuel Cell and H₂ Opportunity Center

- Comprehensive online database
- Project activities include:
 - Encourage supplier engagement
 - Release and maintain public directory
 - Conduct outreach campaign (social media, etc.)

Emphasis on Tech to Market Activities with Labs

Increase Industry Contact

- Business-to-Business Product Theater (11 Labs)
- Manufacturing Road Show
- Small Business Vouchers, TTOs (SBIRs)

Listen to the Voice of the Customer

- Key Staff Exchange with stakeholders
- Engagement with companies

Develop
Technology
Transfer
Skills

- Business Plan Development Training
- Lab Corps

Increase Market Understanding

Improve Private Sector Relationships

Held T2M Event at FC Seminar, future plans at ECS (Oct. 2015)

Future Plans

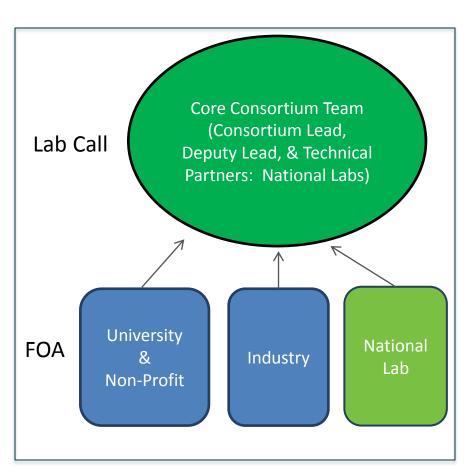
Consortia Strategy

Multi-Lab Team: Lab Call to competitively select core for Consortium

1) Fuel Cells: FC-PAD

Fuel Cell Performance and Durability

2) Storage: Hy-MARC


Hydrogen Storage Materials Advanced Research Consortium

3) Production: H2RENEW

Hydrogen Production from Renewables

Future FOAs (subject to appropriations)

 Add Industry, University, Lab Projects (e.g. 2-4 yrs/project)

Potential Collaborations

Office of Science , Advanced Manufacturing Office, Relevant Offices and Other Agencies R&D

Demonstration & Deployment

Accelerated Commercialization

- **Pre-Competitive R&D**
- **USCAR**, energy companies, EPRI and utilities

- **Implementing Agreements**
- 25 countries

State Partnership and Collaboration

- **International Government** Coordination
- 17 countries and European Commission

National Lab (SNL & NREL) led activities with industry to support H2USA

Public-Private Partnership to enable infrastructure >40 partners

FCTO also collaborates with multiple Agencies including DOC, DOD, DOT, EPA, NASA, NSF, USDA, USPS, and State Governments

Thank You

Dr. Sunita Satyapal

Director

Fuel Cell Technologies Office

Sunita.Satyapal@ee.doe.gov

hydrogenandfuelcells.energy.gov