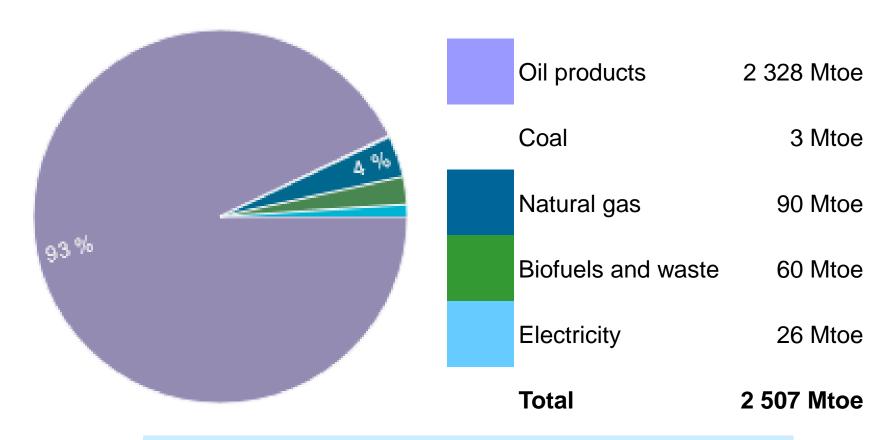


bioenergy2020+

Sustainability versus Cost – The Perfect Future Energy Carrier


Dina Bacovsky, BIOENERGY 2020+ Eco-Mobility 2025plus 9-10 November 2015

Global final energy demand in the transport sector (2012)

http://www.iea.org/Sankey/index.html#?c=World&s=Final%20consumption

Information on Fuels – AMF Fuel Info

IMPLEMENTING AGREEMENT FOR ADVANCED MOTOR FUELS

About AMF

Mission and Objectives Overview of Activities Contracting Parties IEA Background

Publications

Annual Reports Project Reports Newsletters Brochures

Links

Government Agencies IEA-related Industry Associations Emissions & Fuel Quality

Home > FUEL INFORMATION > Fuel Info Home

Introduction

The "AMF Fuel Information System" focuses on the end-use aspects of advanced motor fuels. Performance of cars, effects on emissions and compatibility with infrastructure are included, whereas resources, production and GHG emissions are excluded. When the end-use aspects are evaluated, the complex field of engine/aftertreatment options, uncertainties of measurement methods and incomparability of measurement campaigns has to be taken into account. Priority is given to new studies; however, these represent only minor part of published studies.

The aim of the "AMF Fuel Information System" is to provide easy access to all end-use related aspects of advanced motor fuels.

Available content:

- · Diesel and Gasoline
- Fatty Acid Esters
- Paraffins
- Ethanol
- Methanol
- Butanol
- · Oxygenates for diesel
- Ethers
- · Bio/synthetic gasoline
- Methane
- · LPG
- DME
- · Oils and fats

http://www.ieahev.org http://www.ieafuelcell.com

Search

NEWS

AMFI Newsletters EU Parliament supports advanced

US: Renewable Fuel Standard volumes released Methanol and DME plant for Trinidad

Q

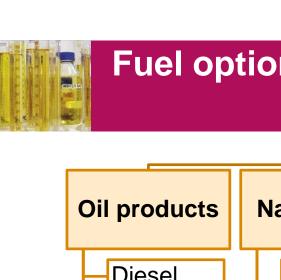
Gevo sells renewable jet fuel to NASA

EVENTS

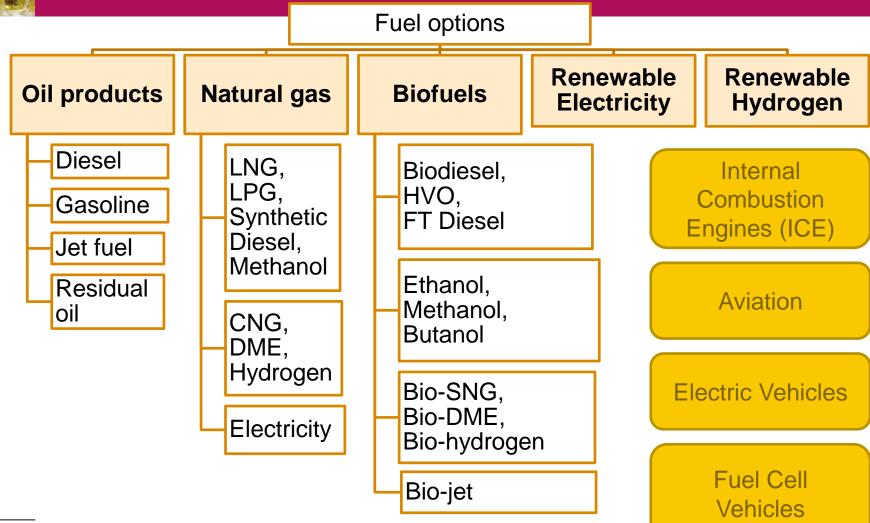
Future Events Past Events

PROJECTS

Active Projects (Annexes) Completed Projects (Annexes)



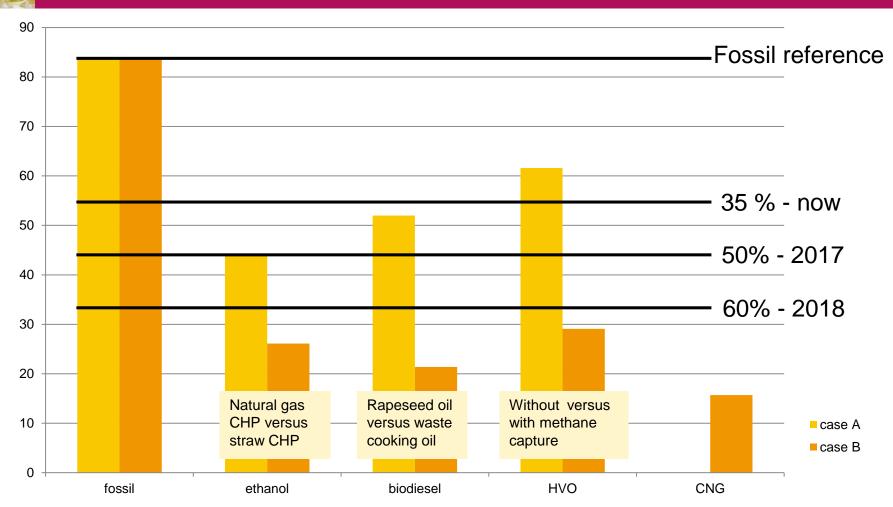
FUEL INFORMATION Fuel Info Home Diesel and gasoline Fatty Acid Esters (biodiesel) Bio/synthetic gasoline Bio/synthetic diesel (paraffins) Ethanol Methanol Butanol


Oxygenates Methane

Fuel options by source

Vienna, 9 November 2015 Folie 4

innovations kompetenz


SUSTAINABILITY

mata:

GHG emissions – selected values [gCO2eq/MJ]

Vienna, 9 November 2015 Folie 6

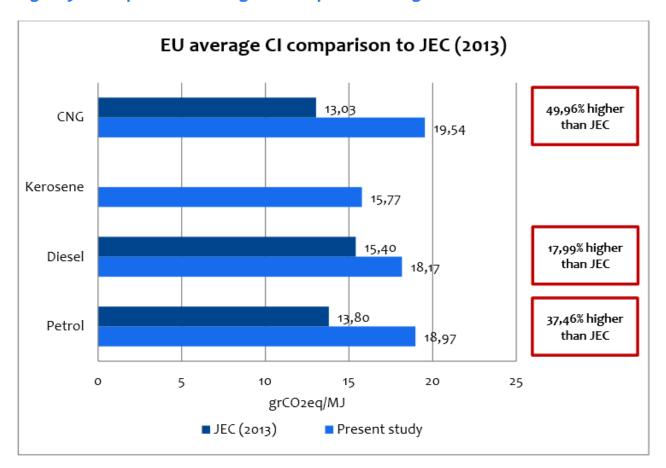
EU Renewable Energy Directive – Annex V

Variation between different LCA assessments

- Why do different LCA for the same fuel pathways lead to differing results?
 - Data from different time periods used
 - Data from different regions used (technologies, environment,...)
 - Data quality (secondary data, taken from different sources, different boundary conditions,...)
 - Data not representative (does not include startup/shut-down phases, production problems,...)
 - Differing methodology, e.g. allocation of emissions to by-products

Variation in ethanol GHG emission results

- Nitrogen fertilizer variations
- Emission factor used to determine N2O emissions
- Increased yields and reduced fertilizer requirements for most feedstocks over time
- Variation in yields achieved for the same feedstock in one region to another
- Increasing soil carbon not accounted for
- Ethanol plant technology improvement over time
- Allocation method
- Carbon intensity of the electric power consumed



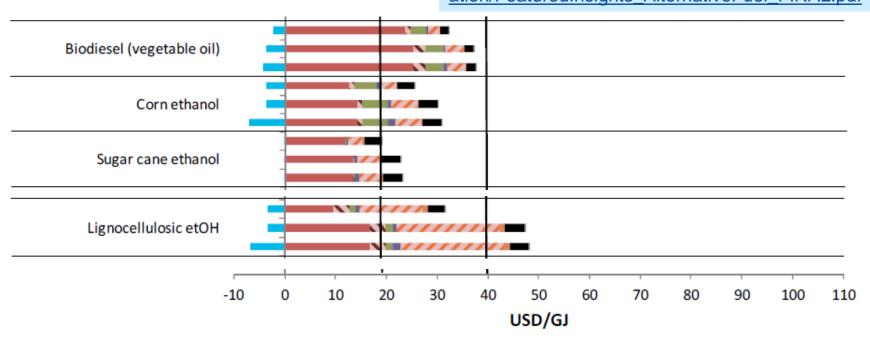
GHG emissions of fossil fuels

Figure 9-6 Comparison of average CI of oil products and gas streams with JEC values

Sustainability Summary for Biofuels

- All biofuels offer GHG emission reductions
- How much depends on
 - Raw material
 - Energy source
 - Conversion efficiency
 - Regional variation
 - Fossil fuel comparator

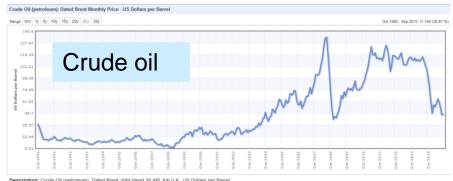
COST

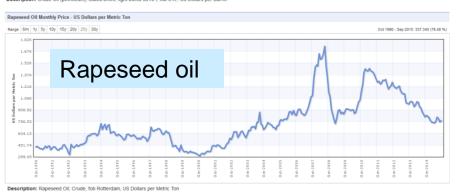


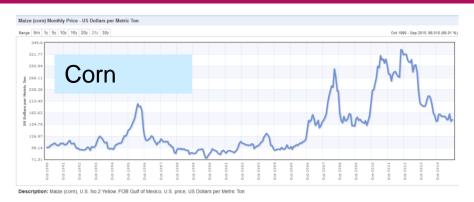
IEA 2013: Production Costs of Alternative Transportation Fuels

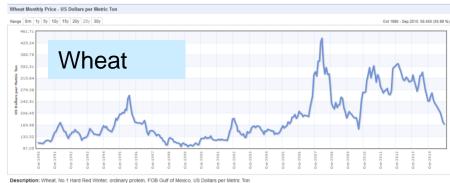
http://www.iea.org/publications/freepublications/public ation/FeaturedInsights_AlternativeFuel_FINAL.pdf

- Feedstock cost
- Input streams (energy)
- Capital costs
- Co-product gain
- Fuel storage and refuelling


- Input streams (non-feedstock, non-elect.)
- Electricty input cost
- O&M costs
- Fuel transport
- Reference cost



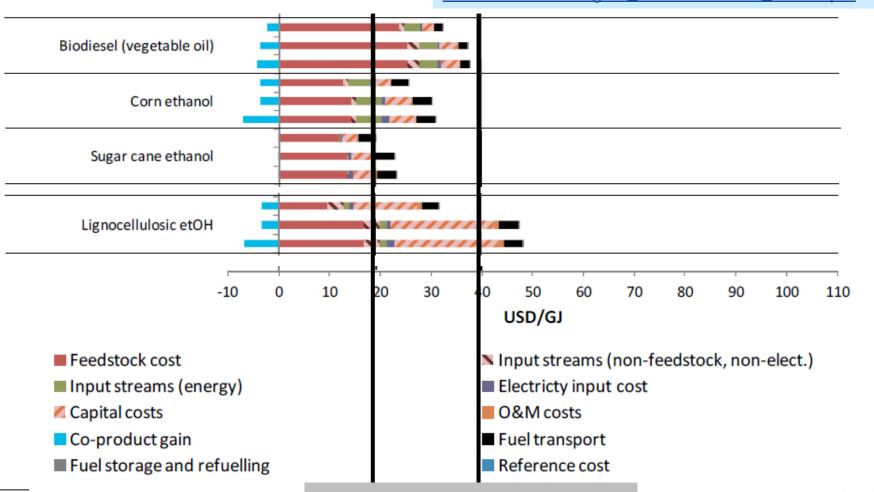




Price development of crude oil and biomass feedstock is interlinked

Crude oil price development

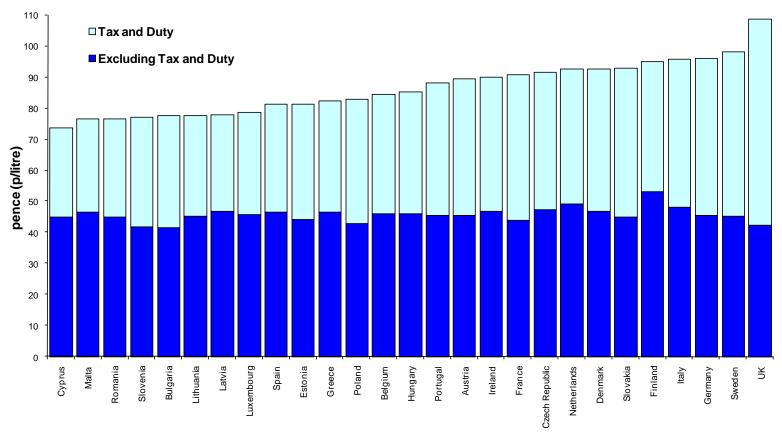
Europe Brent Spot Price FOB (Dollars per Barrel)



IEA 2013: Production Costs of Alternative Transportation Fuels <a href="http://www.iea.org/publications/free

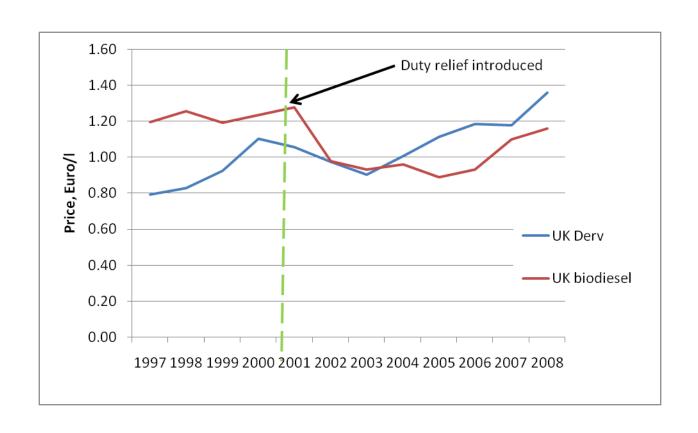
http://www.iea.org/publications/freepublications/publication/FeaturedInsights AlternativeFuel FINAL.pdf

Vienna, 9 November 2015 Folie 15 Crude oil price of 60 USD/bbl – 150 USD/bbl



Tax exemptions for biofuels enhance their competitive ability

Diesel pump prices across Europe including duty and VAT



Tax exemptions enhance competitive ability of biofuels

Cost Summary for Biofuels

- Biofuel production prices depend largely on feedstock prices, which are not independent from crude oil prices;
- Tax exemptions can make up for higher production costs

SUSTAINABILITY VERSUS COST

Advanced Biofuels

For better sustainability and lower costs: focus on residues and waste streams

- Waste cooking oil biodiesel
- Straw ethanol
- Manure biogas

However:

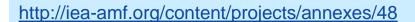
- Limited resources available
- Some technologies not yet mature

Investigation of existing alternatives AMF Annex 48

Analysis of
GHG emissions and
costs of
various alternative fuels
based on natural gas pathways

Annex 48

A Report from the IEA Advanced Motor Fuels Implementing Agreement


Feasibility of Natural Gas Pathways for Motor Vehicles An International Comparison

Karen Sikes, Jonathan Ford, Julia Blackburn SRA International, Inc.

Ralph McGill Fuels, Engines and Emissions Consulting

NG-derived Fuel/Powertrain Combinations Investigated

Light Duty Vehicles									
END USE FUEL	POWERTRAIN								
Natural gas (compressed; fossil or biomethane)	ICE								
FT Diesel	ICE								
Synthetic Gasoline	ICE								
Hydrogen (compressed)	Fuel cell								
Methanol (M85)	ICE								
LPG*	ICE								
Electricity	EV, PHEV (40/50km)								
Heavy Duty Vehicles									
END USE FUEL	POWERTRAIN								
Natural gas (compressed or liquefied; fossil or biomethane)	ICE								
FT Diesel	ICE								
Synthetic Gasoline	ICE								
Methanol (M85)	ICE								
LPG*	ICE								
Hydrogen (compressed)	Fuel cell								
Dimethyl Ether (DME)	ICE								

^{*}LPG composition varies by country. The following propane/butane ratio are used in this study: Canada: 95/5, China: 50/50, Denmark: 70/30, Finland: 95/5, Israel: 20/80, and United States: 95/5.

Winners

	LDV Emissions	LDV Costs	HDV Emissions	HDV Costs		LDV	LDV Costs	HDV Emissions	HDV Costs
Canada				_	China				_
CNG (fossil)					CNG (fossil)				
CNG (AD)					CNG (LFG)				
LNG (fossil)	///////				LNG (fossil)				
LNG (AD)					LNG (LFG)				
LPG					LPG				
FT Diesel					FT Diesel				
Synthetic Gasoline					Synthetic Gasoline				
DME	////////				DME	////////	///////		
Methanol (M85)					Methanol (M85)				
Compressed H ₂ – Fuel Cell					Compressed H ₂ – Fuel Cell				
Electricity PHEV (40/50 km)					Electricity PHEV (40/50 km)			///////	
Electricity EV					Electricity EV				

Clear Winners
Baseline is Superior

Marginal Winners Not Investigated

Winners

	LDV Emissions	LDV Costs	HDV Emissions	HDV Costs		LDV Emissions	LDV Costs	HDV Emissions	HDV Costs
Denmark				_	Finland				_
CNG (fossil)					CNG (fossil)				
CNG (AD/LFG)					CNG (AD)				
LNG (fossil)	////////				LNG (fossil)	////////			
LNG (AD/LFG)	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>				LNG (AD)	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>			
LPG					LPG				///////
FT Diesel					FT Diesel				********
Synthetic Gasoline					Synthetic Gasoline				
DME	////////				DME	<i>////////</i>			
Methanol (M85)	1				Methanol (M85)				
Compressed H ₂ – Fuel Cell					Compressed H ₂ – Fuel Cell				
Electricity PHEV (40/50 km)				<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	Electricity PHEV (40/50 km)				
Electricity EV					Electricity EV				
Clear Winners Baseline is Superior					Marginal Winners Not Investigated				_

Winners

Israel	LDV Emissions	LDV Costs	HDV Emissions	HDV Costs	United States	LDV	LDV Costs	HDV Emissions	HDV Costs
ONG (fossil)					CNG (fossil)				
CNG (AD)					CNG (AD)				
ING (fossil)					LNG (fossil)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
.NG (AD)	\				LNG (AD)	- ////////////////////////////////////			
PG	<u> </u>	///////			LPG (AD)				
T Diesel					FT Diesel				
ynthetic Gasoline					Synthetic Gasoline				
OME					DME				
Methanol (M85)					Methanol (M85)		********		
Compressed H ₂ – Fuel Cell					Compressed H ₂ – Fuel Cell				
Electricity PHEV (40/50 km)			////////	<i>7//////</i>	Electricity PHEV (40/50 km)			<i>///////</i>	////////
Electricity EV					Electricity EV				

Baseline is Superior

Not Investigated

Sustainability versus Cost Summary

Winners on both GHG emissions and costs

- Often draw on wastes and residues as raw materials
- May have limited resource availability
- Some technologies are not yet fully developed
- Winners depend on the regional conditions

Investigate county-specific to obtain meaningful results!

Clean Power for Transport: A European alternative fuels strategy (2013)

comprehensive mix of alternative fuels EU-wide availability and common technical specifications should be provided for all alternative fuels

	Mode	Roa	id-passen	ger	Ro	oad-freigh	Air	Rail				
Fuel	Range	short	medium	long	short	medium	long			inland	short-sea	maritime
LPG												
Natural	LNG											
Gas	CNG											
Electricit	ty											
Biofuels	(liquid)											
Hydroge	n											

Thank you for your attention!

IEA Advanced Motor Fuels:

www.iea-amf.org

IEA Bioenergy Task 39:

www.task39.org

Online database:

http://demoplants.bioenergy2020.eu

Netzwerk Biotreibstoffe:

www.nwbt.at

Dina Bacovsky

+43-7416-52238-35

dina.bacovsky@bioenergy2020.eu

www.bioenergy2020.eu

