Rethinking Propulsion.

Developments in Hydrogen Production and Storage Technologies

Viktor HACKER, Gernot VOITIC, Theo FRIEDRICH Institute of Chemical Engineering and Environmental Technology NAWI Graz, Graz University of Technology

> Eco-Mobility 2025plus - 10th Conference November 9th and 10th, 2015

Vienna, 09.11.2015

Hydrogen production

GEET

Hydrogen Production Technologies

State-of-the-art for

large centralized production

- Steam Methane Reforming
- Partial Oxidation
- Authothermal Reforming

- Applications for centralized and decentralized production experimental status
 - Methanol Steam Reforming
 - Ammonia Cracking
 - Chemical Looping Reforming
 - Catalytic Cracking of hydrocarbons
 - Plasma Reformer

Hydrogen supply options for fuel cell cars

- State-of-the-art supply
 - Centralized production, truck delivery

Pipline delivery

- Future supply options
 - Onsite reforming

IEA/H2/TR-02/002

Hydrogen supply options for fuel cell cars

Future supply options

Biomass conversion to hydrogen (including CO₂ sequestration)

IEA/H2/TR-02/002

Current status of hydrogen production

ChemSusChem 2011, 4, 21-36; Wiley

Zech K, et al. DBFZ Report Nr.19, Hy-NOW, Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse. [last accessed 06.11.14].

Spath P: et al. Biomass to Hydrogen Porduction Detailed Design and Economics Utilizing the Batelle Columbus Laboratory Indirectly Heated Gasifier. [last accessed 06.11.14].

- Current hydrogen production is based on fossil fuels.
- Hydrogen storage and transportation logistics are significant cost aspects

	Centralized production of	Decentralized production of			
	hydrogen	hydrogen			
Costs of production incl. purification					
[cent/kWh]	4.2 - 6.0				
[€/kg]	1.4 – 2.0				
Transportation costs					
[€/kg/100km]	0.6				
Transport	200				
distance [km]					
[€/kg/200km]	1.1				
Costs of gas compression 500 bar					
[€/kg]	0.5				
Storage					
[€/kg]	0,2				
Total [€/kg]	3.2 - 3.8				

7

Decentralized hydrogen production

TU Graz | Institute of Chemical Engineering and Environmental Technology

The Reformer Steam Iron Process

The Flex Fuel Reformer - prototype

The Flex Fuel Reformer - prototype

Process conditions:

- main impurity: CO₂
- hydrogen purity of 99.99%
- CO content <15 ppm

Steam Iron Process – pressure experiments

Voitic G., et al., Appl. energy, doi:10.1016/j.apenergy.2015.03.095

Summary

The **Reformer Steam Iron Process** enables hydrogen production, purification and storage in one unit

- Pure hydrogen was produced from biogas using fixed bed reactor systems
- The production of pure pressurized hydrogen is possible without additional gas compression by steam oxidation of iron
- The Reformer Steam Iron Process is suitable for decentralized hydrogen production

CEE

Hydrogen storage

GEET

Chemical Hydrogen Storage

- Many different technologies
 - Metal hydrides, LOHCs, NH₃, NH₃BH₃, MeOH, EtOH...
 - Examples for liquid H₂ carriers
 - LOHCs
 - Aqueous solutions of hydrides (NaBH₄, other borohydrides)
 - Slurries of NH₃BH₃
 - MeOH, EtOH
- Why Chemical carriers?
 - For some applications advantageous compared to gaseous H₂ storage
 - Liquid carrier: easy handling, distribution and storage, inexpensive infrastructure
- Differentiation
 - Hydrogen carrier for PEMFC or SOFC
 - Fuels for Direct Fuel Cells (MeOH, EtOH)

Liquid carrier versus conventional storage proionic ()

	700 bar storage	LOHC	NaBH ₄ IL-BH ₄	Ammonia borane slurry
Description	Gaseous	Liquid at RT	Aqueous solution liquid at RT	Solid dispersed in liquid carrier fluid
Infrastructure costs	Very high	Conventional infrastructure for liquid fuels		
System cost	High (tank manufacturing)	Cheaper compared to high pressure tank costs		
On-board efficiency	high (>90%)	Below DOE target	high (>90%)	
Off-board efficiency	DOE target in range (60%)	DOE target reached (exothermic regeneration)	Below DOE target	
H ₂ price	DOE target (\$ 2-4/kg) achievable		Above target, ongoing R&D	
Applications	portable, stationary	stationary H ₂ distribution	portable and stationary	

Ionic Liquid for H₂ Storage

TU Graz I Institute of Chemical Engineering and Environmental Technology

16

- Borohydride based Ionic Liquids
- Why organic cations instead of sodium?
 - Advantages compared to NaBH4
 - Improved solubility for reaction byproduct (borate)
 - No hydrogen loss
- Research areas
 - Storage medium (proionic)
 - Hydrogen release (TU, VTU)
 - DBFC (TU)
 - System design (TU, VTU)
 - Recycling (proionic, TU, VTU)

lonic Liquid examples					
Name	Structure	H2 capacity (theor.)			
TMPA - BH4	-N⊕ ⊖BH4	6.9 wt%			
BMPyr - BH ₄	Ø N BH₄	5.1 wt%			
DMMor - BH ₄	O ⊕ N ⊖BH₄	6.1 wt%			
TEMA - BH4	N → BH ₄	5.5 wt%			

Graz

proionic ()

Borohydride H2 release

- Storage medium conditions
 - Aqueous solutions
 - Solid carrier with water/steam supply to reactor
- Hydrogen release
 - $IL-BH_4 + 4H_2O \rightarrow IL-B(OH)_4 + 4H_2$
 - Catalytic
 - Acids
 - Heterogeneous metal catalysts
 - Thermal

Properties

- Pressureless at ambient temperatures
- No hydrogen release without catalyst
- Simple handling

Characteristics & Advantages

- Liquid storage medium at ambient temperature and pressure
- Non-flammable storage solution
- Simple handling and fuel-filling
- Catalytic H2 release already at ambient temperatures
- No hydrogen release without catalyst
- Long term stable

Long term stability of Ionic Liquids compared to $NaBH_4$, same H_2 content and initial conditions, aqu. solutions in 1M NaOH

H2 release and PEMFC system

- Exothermic hydrolysis reaction
- Metal catalysts

A3PS ••••

- Carrier: Nickel foam / Nickel grid
- Catalyst: Cobalt, other non noble metals
- Release in cont. flow-through reactor
 - Gas-liquid separation
 - Hydrogen purification
 - PEMFC

Catalytic hydrogen release - batch

DBFC

Research areas

- Catalyst research
 - Better understanding of reaction mechanism
 - Anode: basic research on Pd/C catalyst
 - Control of side reactions
- Electrode characterization
- MEA and cell
- Application field
 - Comparable to DMFC
 - Advantage: Non-flammable storage medium

DBFC – reaction mechanism

For high efficiency and long term operation - complete oxidation without intermediate reaction product formation required

Low potential (0.4V vs. RHE): incomplete conversion, surface blocked

High potential (0.8V vs. RHE): complete BH4 conversion

Grimmer et al., Applied Cat. B: Environm. 180 (2016) 614-621

rel. Intensity

Summary

A3PS

- Development of new H₂ Storage System
 - Ionic Liquids with borohydride as hydrogen carrier
 - Ongoing development of new ionic liquids

Hydrogen release

- Basic catalyst research completed
- Basic reactor design developed
- Goal: Complete system with PEMFC
- DBFC
 - Research on catalysts and reaction mechanisms
 - Goal: Cell development
- Ongoing research project

Events - Dissemination

9th FC Summer School 2016

Graz University of Technology in cooperation with Yokohama National University, Japan. August 29th – September 3rd, 2016

2nd International Workshop on Hydrogen and Fuel Cells

Graz University of Technology August 31st, 2016

www.tugraz.at/fcsummerschool

Acknowledgements

Federal Ministry of Science, Research and Economy

Viktor HACKER

Institute of Chemical Engineering and Environmental Technology, NAWI Graz

Graz University of Technology 8010 Graz, Inffeldgasse 25/C, Austria

viktor.hacker@tugraz.at www.ceet.tugraz.at

