EFFICIENCY TOWARDS 50% AND EMISSIONS TOWARDS ZERO: FUTURE ICE TECHNOLOGY

A3PS Conference 2015 9.-10.11.2015 **Peter Prenninger Theodor Sams** Hans Seitz Helmut Theissl

FUTURE POWERTRAIN TECHNOLOGY ZERO IMPACT EMISSIONS

EU1 → EU6:

Gasoline: NO_x+HC: -86 %

Diesel: NO_x +HC: -85 % PM: -98 %

Fuel Cell: All: -100%

Source: Daimler

FUTURE POWERTRAIN TECHNOLOGY BENEFIT OF CONNECTIVITY

Fuel Consumption: CO₂-Emissions: 0,9 l/100 km (combined) 21 g/km (combined)

Source: VW - XL1 Hybrid Electric Vehicle (catalogue)

FUTURE POWERTRAIN TECHNOLOGY CHALLENGE HEAT LOSSES

SYSTEM TYPE: INTERNAL COMBUSTION DIESEL ENGINE

Wall Heat Losses: Efficiency: 35-15 % 42-50 %

JAPANESE "AICE" RESEARCH PROGRAMME

Solutions Exemplified to Achieve a 50% Brake Thermal Efficiency in ICEs

Source: Prof. Y. Daisho, ERTRAC Workshop, 2015-06-02, Brussels

JAPANESE "AICE" RESEARCH PROGRAMME

A. Kikusato, J. Kusaka and Y. Daisho, Waseda Univ. 2014

THERMODYNAMIC IMPROVEMENT POTENTIALS

High pressure cycle:

- Cylinder mass
 - \circ w/o EGR \rightarrow Excess air ratio
 - \circ with EGR \rightarrow Cylinder mass ratio
- Valve timing (Miller, Atkinson)
- Compression ratio
- Combustion process
 - Center of combustion
 - Shape & duration of combustion
- Reduction of cylinder wall heat losses

Low pressure cycle:

- Turbocharging efficiency
- Pressure losses
- Reduction of exhaust wall heat losses before TC

INFLUENCE OF TURBOCHARGER EFFICIENCY ON PUMPING WORK

OPTIMUM EFFICIENCY DEPENDING ON EXCESS AIR RATIO

OPTIMAL INTAKE VALVE TIMING DEPENDING ON TURBOCHARGER EFFICIENCY

INFLUENCE OF COMPRESSION RATIO ON FUEL CONSUMPTION

2 g/kWh

Delta BSFC [g/kWh] Ideal Engine Delta BSFC [g/kWh] **Real Engine** 15 16 17 18 19 20 21 22 23 24 25

Compression ratio [-]

1200 rpm – Full Load

HIGH EFFICIENT COMBUSTION WITH AND W/O EGR (EURO VI)

OPTIMIZED NO_x / BSFC TRADE-OFF

1200 rpm – BMEP 18 bar

HIGH EFFICIENT COMBUSTION WITH AND W/O EGR (EURO VI)

CHALLENGE: REDUCTION WALL HEAT LOSSES

Peak Efficiency of PC Diesel Engine

Technology Hurdles

- Low Heat Capacity & Low Thermal Conductivity of Materials
- Oilfree Contact of Piston and Liner

FUTURE POWERTRAIN TECHNOLOGY WHAT CAN WE LEARN FROM NATURE?

NEW MATERIALS

GENERIC TECHNOLOGIES

Species: Heat losses: Snow Grouse approx. 0 W/m²/K

FRICTION REDUCTION?

Micro-Structured Tribologic Surfaces for Metallic Contacts with Oil Lubrication

Micro-Structured Tribologic Surfaces for Metallic

SPECIFIC SURFACE STRUCTURES

Contacts with Oil Lubrication

A3PS Conference 2015 | Peter Prenninger et al. | November 9th-10th 2015 |

p = 3 MPa; r = 30 mm; PAO; v = 125 ml/h; T = 100° C; v = 0,04-2 m/s 0.20 hexagonal polished stochastic

HOW TO ACHIEVE >50% EFFICIENCY?

Peak Thermodynamic Engine Efficiency [%]

engine

pumping losses, opt. combustion)

rejection, short combustion, low friction, long stroke)

TECHNOLOGY & PROCESS TO REACH OUT TO PHYSICAL LIMITS

Temperature Peak-Pressure approx. 250 bar Controlled Combustion Isolated Expansion / 55% Isolated Compression End of the Process (near Environment) Cooled / Environment Compressio Entropy

Objectives

- Approaching the ideal process in single point operation
- Usage of sustainable fuels

Technology hurdles

- New nano-structured materials
- New thermodynamic process layout

SUMMAY & CONCLUSION

Need for further improved charging systems

Peak firing pressure potential of at least 250 bar prerequisite for highly efficient engine

EGR mandatory for ultra low NOx levels

Waste heat recovery via thermo-chemical processes

High potential in combustion process

New materials/coatings needed for low heat rejection

Dedicated surfaces for low friction systems

EFFICIENCY TOWARDS 50% AND EMISSIONS TOWARDS ZERO: FUTURE ICE TECHNOLOGY

Peter Prenninger Theodor Sams Hans Seitz Helmut Theissl