

Research Activities towards long-term stable SOFCs at Montanuniversitaet Leoben

Werner Sitte

Lehrstuhl für Physikalische Chemie Montanuniversität Leoben, Österreich

Outline

Focus

 Long-term investigation (t < 1000 h) of oxygen exchange kinetics of SOFC cathodes in real atmospheres H₂O-, CO₂-, SO₂-containing atmospheres surface poisoning by Cr- and Si-compounds

Methods

- dc conductivity relaxation measurements (k_{chem} , D_{chem} , σ_e)
- surface and bulk characterisation by XPS and TEM (EDXS, EELS)
- thermodynamic calculations

Materials

- $La_{0.58}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ (LSCF)
- La_{0.6}Sr_{0.4}CoO_{3-δ} (LSC)
- $Nd_2NiO_{4+\delta}$ (NNO)

SOFC cathodes

Perovskites (ABO_{3- δ}):

A=La,Sr,Ba and B=Co,Fe,Mn δ... oxygen nonstoichiometry (oxygen vacancies)

K₂NiF₄-type oxides (A₂BO_{4+d}):

A=Nd,Pr and B=Ni
 δ... oxygen nonstoichiometry
 oxygen excess (oxygen interstitials)

A-site ions (red) BO₆-octahedra (green)

Oxygen exchange kinetics

- oxygen adsorption on surface
 - physisorption: $O_2(g) \rightarrow O_{2,ads}$
 - chemisorption: $O_2(g) \xrightarrow{e^-} O_{2,ads}^- \text{or} O_2(g) \xrightarrow{2e^-} O_{2,ads}^{2-}$
- oxygen dissociation on surface (involving oxygen vacancies)
- incorporation of oxygen into the lattice $O_{ads}^{-} + V_{O}^{\bullet \bullet} + e' \rightarrow O_{O}^{\times}$

Oxygen exchange kinetics

• dc-conductivity relaxation technique

Oxygen exchange kinetics

• dc-conductivity relaxation technique

$$\frac{\partial c}{\partial t} = \widetilde{D} \frac{\partial^2 c}{\partial x^2}$$

$$\widetilde{D}\frac{\partial c}{\partial x} = \pm \widetilde{k}(c - c_s) \qquad x = 0, L$$

 \tilde{D} ... chemical diffusion coefficient R ... surface exchange coefficient

$$\frac{\sigma(t) - \sigma(0)}{\sigma(\infty) - \sigma(0)} = \frac{m(t)}{m(\infty)}$$

van der Pauw method $ightarrow \sigma$

in dry and humid O₂/Ar-atmospheres

$La_{0.58}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$

Long term oxygen exchange kinetics of La_{0.58}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-δ} in dry and wet atmospheres at 600°C

Eco-Mobility 2014, Vienna

constant cation composition : ~ 50 nm.

La_{0.58}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-δ} core level spectra

XPS core level spectra of the O 1s, La 3d, Sr 3p peaks of the three different samples, obtained from immediate surface (0 nm), at etch depths of 1 nm and 10 nm, and from bulk (depth > 300 nm).

La_{0.58}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-δ} core level spectra

XPS core level spectra of Co 2p and Fe 2p peaks of the three different samples, obtained from immediate surface (0 nm), at etch depths of 1 nm and 10 nm, and from bulk (depth > 300 nm).

UNIVERSITÄ

$Nd_2NiO_{4+\delta}$

LPC

 Long term stability of k_{chem} of Nd₂NiO_{4+δ} in dry + wet atmospheres (700°C)

$Nd_2NiO_{4+\delta}$: XPS elemental depth profiles

$Nd_2NiO_{4+\delta}$: XPS elemental depth profiles

Gas phase equilibria

- Poisoning (degradation) is caused by reaction of the cathode with volatile species which are transported via the gas phase
- The predominating gas phase species depend on T, p(O₂), p(H₂O)
- Under the present experimental conditions:
 - $\frac{1}{2} \operatorname{Cr}_2 O_3(s) + H_2 O(g) + \frac{3}{4} O_2(g)$ $\rightarrow \operatorname{CrO}_2(OH)_2(g)$
 - $\frac{1}{2}$ Cr₂O₃(s) + 3/4 O₂(g) \rightarrow CrO₃(g)
 - $SiO_2(s) + 2 H_2O(g) \rightarrow Si(OH)_4(g)$

E. Opila et al., JOM 58 (2006) 22.

Comparison: Cr-layer vs. Cr-pellet

$(La,Sr)CoO_{3-\delta}$ 1000 h 600°C Cr-layer (dry atmosphere)

- 1. Cr present up to about 40 nm depth
- 2. Sr-enrichment up to 40 nm depth
- 3. Applied Cr-layer \rightarrow higher Cr-content (<35 at-%)
- 4. Cr-content in 30 nm+90 nm depth: 0.5 at-%
- 5. No Si detected (dry atmosphere!)

- 1. Cr present up to about 100 nm depth
- 2. Sr-enrichment up to 100 nm depth
- 3. External Cr-source \rightarrow lower Cr-content (<2 at-%)
- 4. Cr-content in 90 nm depth: 0.5 at-%
- 5. Thin zone of Si-poisoning (wet atmosphere!)

Scanning electron microscopy

Information on surface topography (sample C)

XPS → Average chemical composition of surface in the analyzed zone (around 500 µm) after 1000h dry + 1000h humid 1% O_2 /Ar-atmosphere

Silicon poisoning (EFTEM-SI)

Thinner and thicker regions coexist

- Energy-filtered TEM spectrum-imaging
- Si is present throughout the surface
- Thickness of the layer approx. 5-35 nm

E. Bucher, C. Gspan, F. Hofer, W. Sitte, Solid State Ioncis, 230 (2013) 7–11

Problem

• Surface limited oxygen exchange of $La_2NiO_{4+\delta}$

even large samples
 6 x 6 mm do not allow the determination of D_{chem}

Solution

- $La_2NiO_{4+\delta}$ is covered by a 200 nm-thick Ag-layer
- gold plated at the ends
- enhanced oxygen exchange:
 D_{chem} can be determined with usual sample sizes

(a) SEM-pictures of a silver film on $La_2NiO_{4+\delta}$ after annealing for 24 hours at 600, 700 and 800°C. (b) Backscatter image

700°C pO₂=0.01 bar

Conductivity relaxation curves of $La_2NiO_{4+\delta}$ with and without a surface layer of silver.

Effect of a 200nm Ag layer on k_{chem} of $La_2NiO_{4+\delta}$ at $pO_2=0.1$ bar. A. Egger, W. Sitte, Solid State Ionics 258 (2014) 30–37

Arrhenius plot of D_{chem} and k_{chem} of oxygen for $La_2NiO_{4+\delta}$ at $pO_2 = 0.01$ bar.

Conclusions

- ➤ Long time investigations (1-2 kh) → necessary to investigate signifcant changes of the oxygen exchange kinetics of complex oxides in dry or humid O₂/Ar-atmospheres.
- ➤ k_{chem} of Sr-containing SOFC cathodes → more severely affected in dry and humid atmospheres than Sr-free alternatives.
- ➤ XPS and elemental depth profiles, HRTEM investigations → insight into the origin of the degradation in the range 0-50 nm.
- ➤ Humid atmospheres → strongly enhance transport of Si and Cr via the gas phase in the presence of a Si- or Cr-source, even at temperatures as low as 600°C.
- Surface limited oxygen exchange: increase of k_{chem} by deposition of a thin layer of catalytically active nanocrystalline Ag.