20.10.2014

Eco-Mobility 2014

Plansee's FCH Activities

A3PS Vienna

PLANSEE

This document is the property of PLANSEE SE and shall not be communicated to 3^{rd} parties and/or reproduced without prior written agreement. Its contents shall not be disclosed. PLANSEE SE – © 2014

A Step ahead in Technology.

Growth Option Fuel Cell

R&D and SOFC Pilotline at Plansee headquarters (Austria)

- 20 years of experience in SOFC
- 40 people in SOFC core team
- Continuity in R&D and investments
- Experience with industrialization of product lines and technology transfer
- Long ranging (10 years +) cooperations
- Strong scientific network

Powdermetallurgical components for SOFC stacks

Activities of Plansee

 ESC stack concept deriving from forerunner projects with Siemens as baseline

A Step ahead in Technology.

Powdermetallurgical components for SOFC stacks

Activities of Plansee

- ESC stack concept deriving from forerunner projects with Siemens as baseline
- Development of suitable processes for the fabrication of SOFC specific powdermetallurgical alloys and processes for Cr-5(Fe1Y) stack interkonnects

PLANSEE

A Step ahead in Technology.

Powdermetallurgical components for SOFC stacks

Activities of Plansee

- ESC stack concept deriving from forerunner projects with Siemens as baseline
- Development of suitable processes for the fabrication of SOFC specific powdermetallurgical alloys and processes for Cr-5(Fe1Y) stack interkonnects
- (1) 1 kW Micro Combined Heat and Power (CHP) Hexis AG (CH)
- (2) Bloom Energy Systeme 100 / 200 kW

A Step ahead in Technology.

This document is the property of PLANSEE SE and shall not be communicated to 3rd parties and / or reproduced without prior written agreement. Its contents shall not be disclosed. PLANSEE SE – \odot 2014

141020-A3PS-Eco Mobility 2014 . 4

Overwiew

Powdermetallurgical technology for SOFC stack components

MK 351 stack: From Vision to reality

Activities for mobile SOFC applications

A Step ahead in Technology.

Solid Oxide Fuel Cell (SOFC) Mk 351 CFY/ESC Stack components

Interconnects and Cells

- The team Fraunhofer IKTS and Plansee are cooperating since more than a decade to advance the SOFC technology via a so-called CFY/ESC type stack called <u>Mk351</u>
- Cr-Fe-Y (CFY) interconnects (metal) and Electrolyte Supported Cells ESC (ceramic) and as main stack components

MK 351: From Vision to reality Pilotline of SOFC stacks at Fraunhofer IKTS

A Step ahead in Technology.

This document is the property of PLANSEE SE and shall not be communicated to 3rd parties and / or reproduced without prior written agreement. Its contents shall not be disclosed. PLANSEE SE – \odot 2014

Technology readiness

- Establishing of a robust and sustainable supply chain for all stack components
 - Interconnects
 - Electrolytes
 - Cells
 - Powder and pastes
 - Glas
- Establishing of a running pilot line for SOFC-Stacks at Fraunhofer IKTS in Dresden up to 1,000 Stacks x 1 kW p.a.

141020-A3PS-Eco Mobility 2014.7

Mk 351 From Vision to reality Performance data of Mk351 stack

30 Layer Stack	Properties
Power Output	~ 900 W
Dimensions	150 x 130 x 110 mm ³
Weight	~ 10 kg
Temperature	~ 820 °C
Fuel	Hydro Carbons
Fuel Utilization	up to 85 %
Life Time (tested)	> 2 years

Mk 351 stack tests in Hot Box

- Stack tests are typically made in a custom designed and made hot box environment that means close to the system application
- Longtime power degradation with less than 0.7 % / 1,000 h
- Cyclic stability with less than < 0.8 % power degradation after 20 System cycles

A Step ahead in Technology.

Overwiew

- Powdermetallurgical technology for SOFC stack components
- MK 351 stack: From Vision to reality
- Activities for mobile SOFC applications

A Step ahead in Technology.

Metal Supported Cell (MSC) Chronology of Plansee's development

A Step ahead in Technology.

Metal Supported Cell (MSC) Critical-to-success features

Metal-Ceramic layer compound

2 Asymmetric Anode Vergrößerung = 2.00 K X Hochsp. = 20.00 kV 2 µm PLANSE Arbeiteshetand = 91 Signal A = AsB Thin Film Electrolyt EHT = 3.00 kV WD = 6 mm Aperture Size = 30.00 µm Detector = SE2 Fraunhofer-IST File Name = PLA66_C40-3_04.tif User Name = ORTNER Date :27 Oct 2010 Time :10:55:01

This document is the property of PLANSEE SE and shall not be communicated to $3^{\rm rd}$ parties and / or reproduced without prior written agreement. Its contents shall not be disclosed. PLANSEE SE – \odot 2014

A Step ahead in Technology.

Metal Supported Cell (MSC) Status of achievements

Summary

- Membrane quality (Electrolyte) of thin film MSC comparable to that one of full ceramic SOFC
- Proof of significant higher power density for the case of a MSC SOFC

A Step ahead in Technology.

Metal Supported Cell (MSC) Status of achievements

Summary

- Membrane quality (Electrolyte) of thin film MSC comparable to that one of full ceramic SOFC
- Proof of significant higher power density for the case of a MSC SOFC
- Feasibility of robust stack concepts for fast heat-up and cool-down

A Step ahead in Technology.

Metal Supported Cell (MSC) From Cell to System

Plansee Metal Supported Cell

Advanced MSC Stack Concepts

Heavy Duty Vehicles Application

Testrig @ AVL (Austria)

AVL SOFC APU

A Step ahead in Technology.

Metal Supported Cell (MSC) Future work

Identification of improvements

- Higher quality requirements for fabrication of MSC
- Understanding of aging effects under long-term testing
- Development of MSC electrodes dealing with high sulphur diesel fuel
- Establishment of a multi-year research laboratory at RC Jülich (D) & University Vienna (A) to continue scientific R&D of MSC technology (supported by Chistian-Doppler Society (Austria))

A Step ahead in Technology.

This document is the property of PLANSEE SE and shall not be communicated to 3rd parties and / or reproduced without prior written agreement. Its contents shall not be disclosed. PLANSEE SE – © 2014

141020-A3PS-Eco Mobility 2014 . 15

PLANSEE SE A – 6600 Reutte, Austria www.plansee.com

A Step ahead in Technology.

This document is the property of PLANSEE SE and shall not be communicated to 3rd parties and / or reproduced without prior written agreement. Its contents shall not be disclosed. PLANSEE SE – © 2014

141020-A3PS-Eco Mobility 2014 . 16