

A STEP TOWARDS EUROPEAN AUTOMOTIVE BATTERY PRODUCTION

Project eCAIMAN

Boschidar GANEV
Center for Low-Emission Transport
Austrian Institute of Technology

A3PS Conference Eco Mobility 2017 9th November 2017

WHY CONSIDER EUROPEAN LI-ION CELL PRODUCTION?

Current situation

- Asian share of Li-ion cell manufacturing market >80%
- European automotive battery production covers only one part of the value chain

Market development

- Upto 5-10% market share for electric passenger cars envisaged by 2020
- Market penetration 20% for EVs and PHEVs by 2030
- Cell represents >50% of module/pack level cost

WHY CONSIDER **EUROPEAN LI-ION CELL PRODUCTION?**

Supply Chain – Cobalt as a Critical Raw Material

>50% of the world cobalt production comes from Democratic Republic of Congo

2017

Co-compounds are highly toxic and eco-toxic. 3

WHY CONSIDER EUROPEAN LI-ION CELL PRODUCTION?

- Battery will be an increasingly important contribution to xEV lifecycle emissions
- Electricity mix for battery production

Other considerations

- (Small) OEM access to cells
- Europe needs to bring a novel product (something else/new/better) than what is already there >> 5V batteries, HV electrolytes
 - Standardisation, recycling
 - "If nothing is done, European ideas will remain as R&D"

Electrolyte, Cathode and Anode Improvements for Market-near Next-generation Lithium Ion Batteries

PROJECT OBJECTIVES

- The objective of eCAIMAN is to bring European expertise together to develop an automotive battery cell that meets the following demands:
 - energy density of 270 Wh/kg
 - cost of 200€/kWh
 - can be produced in Europe

CONSORTIUM

This project is co-funded by the European Union's Horizon 2020 program under grant agreement no. 653331

ADDRESSING USER REQUIREMENTS

User requirement	eCAIMAN
Range, cost	 Material characteristics / optimisation of the electrochemistry Flexible module design
Competitiveness	 Materials development from a strong European industrial base Scale-up manufacturing on industrial scale Investigation of vehicle integration
Safety, reliability, Durability, recyclabiltiy	 Modeling of ageing mechanism Greener (aqueous) chemistry LCA
Development of test procedures and standards	 Update current regulations and standards for high-voltage batteries Coordination with other GV1 projects

PROJECT APPROACH

Development of Active Cell Components (WP1-3)

Cell Harmonization, Electrode Engineering (WP4) Proof of Concept: Module Design & Peripheries (WP5)

Testing, Evaluation and LCA/LCC (WP6)

- ➤ Industrialise 5V spinel cathode material
- ➤ Industrialise high-capacity anode material
- > Industrialise a stable high-voltage electrolyte

- Large-scale automative cells production applying eCAIMAN materials and technology
- Investigate integration into light, passenger and heavy duty vehicles
- BMS/electronics update for high-voltage concept

- ➤ Validate safety & reliability of the cells
- Update current regulations and standards for high-voltage batteries – aim for int'l standardization
- Assess economic/ecological aspects by LCC/LCA

CATHODE: CHEMISTRY SELECTION

LiMn_{1.5}Ni_{0.5}O₄ (**LMNO**) is **promising positive electrode** material for high-energy density Lithium ion batteries:

- Cobalt free
- 3D lithium-ion diffusion paths
- High operating voltage of 4.8 V
- Theoretical capacity of 147 mAh/g
- Theoretical energy density 700 Wh/kg

LiNiPO₄ Discharge Potential (V) Li₂CoPO₄F LiCoPO₄ 4.5 Instability LiMn_{1.5}Ni_{0.5}◆O **Energy Density** of the Li₂MnSiO4 electrolyte above 250 Wh.kg-1 Li₂CoSiO₄ (graphite negative electrode) Safety Market 2.5 50 100 150 200 250 300 Specific Capacity / mAh.g⁻¹

Drawbacks:

High operating voltage of LiMn_{1.5}Ni_{0.5}O₄

- challenges the electrochemical stability of the electrolyte (gas formation)
- induces interfacial side reactions
- irreversible capacity loss
- poor cycling performance
- safety issues

Ordered structure of LMNO: the green tetrahedra, blue and orange octahedra indicate respectively the LiO₄, NiO₆, and MnO₆ polyhedra.

CATHODE

Characterisation

(Raw materials)

Synthesis

Structure Modification

Surface Treatment

Upscaling

- 9 synthesis strategies
- Three selected
- 5 dopants
- Two selected
- 12 coating approaches
- One selected
- From lab scale to pilot scale
- Pouch cells

Modified synthetic graphite to be processed with acqueous biners

Commercial graphite

Project: Advanced Graphite

Upscaling

~100 pouch cells → Module

SnO2 as alternative anode

Increase conductivity of commercial samples

Production of pure and doped nanoparticles

Proof of concept at lab scale

Coin cells 1-2 pouch cells

SnO₂: carbon black 3:1

Left: FESEM image of pure SnO₂ Right: FESEM image of SnO₂ doped with Cu

ELECTROLYTE: OBJECTIVES

To improve the performance of high voltage lithium ion batteries in developing tailored coumponds for new and/or improved electrolyte formulations

Main issues : degradation of standard electrolytes at high potentials

Description

Reference electrolyte: 3EC/7EMC 1M LiPF₆ +2% FEC

- 1) Optimisation by substituting additives or salts
- 2) Development of tailored electrolytes from alternative solvents to carbonates
- ⇒ Electrochemical evaluation in coin cells and post-mortem analysis

Solvents Additives Salts Upscaling

Major challenges

- Low electrochemical stability of carbonates
- High production of gas under functioning conditions
- the transition metal ion (Mn²⁺, Ni²⁺) dissolution for spinel cathodes like LiNi_{0.5}Mn_{1.5}O₄

CELL HARMONIZATION

- Goal: optimize electrochemical performance on full cell level
- Inactive components: Binders, conductive additives, separators, current collectors,...

Components selection and manufacturability assessment

Slurry and electrode engineering

- Optimization of slurry rheology via formulation;
- Mixing strategies for homogeneous slurry;
- Drying conditions & optimum densification;
- Evaluation of PVdF kynar blend;
- Slurry coating scale-up assessment

Reaction mechanisms at surface/interface

- · Degradation mechanisms
- · Analysis on swollen cells
- Coated-LNMO characterization

Modelling

LNMO electronic structure & DOS by DFT+U started to assess effect of dopants

As coated 1.0g/cc

Cal. 2.0g/cc

Cal. 2.5g/cc

CELLS: MANUFACTURING

Example: some steps in the cell manufacturing process

(non-exhaustive)

Calendaring

(Cell assembly, electrolyte filling...)

Slurry preparation

Electrode coating cathode

Electrode coating rolls

Upscaling parameters identified

Pouch cell

Pouch cell - welding

CELLS: PROTOTYPES

Pouch cells to be integrated in modules for automotive battery packages

10Ah baseline cell at the beginning of the project with commercial LMNO and electrolyte.

Cell1 (C01L09) after 1 month

Cell2 (C01L10) after 1 month

MODULE DESIGN: HARMONIZING OEM REQUIREMENTS

 One of the most challenging aspects has been balancing the technical specifications in order to meet the (very different) needs of every OEM

CENTRO RICERCHE FIAT

- Compact dimensions
 - High volumetric energy density
- Very low voltage

- Performance
- Good range
- Battery pack layout

- High power
- Robustness
- High energy

The final idea has been to design a unique battery module that can be used in series/parallel configuration to get complete battery pack

MODULE DESIGN

- 24 cells 12s2p
- Air or water cooling
- Exchangeable power board for low/very low voltage
- Active cell balancing

BMS+PB fixing plane

TESTING: OBJECTIVES

- Test single cells as well as modules with BMS
- Update current testing procedures to meet high energy/high voltage requirements

- Benchmark the new cells
- Investigate lifetime behaviour
- Better understanding of ageing effects based on electro-thermal simulation
- Evaluate safety behaviour
- Build realistic models for future integration of the pack and supporting BMS

Improve economic and environmental aspects by LCC/LCA and materials

roadmap

TESTING: EVOLUTION OF CELL PERFORMANCES

WLTC Cycles	Capacity (Ah)	W _{ed} (Wh)	ρ _{edw} (Wh/Kg)	ρ _{edv} (Wh/l)
0	9.4	41.3	91.1	192.8
50	9.0	38.5	85.0	179.9
100	8.7	37.6	82.9	175.5
150	Running	Running	Running	Running

A digital era for transport solutions for society, economy and environment

16 - 19 April 2018

Schickard

SUMMARY & OUTLOOK

- Industrial opportunities, supply chain, ecological and policy considerations for xEV cell production in Europe
- eCAIMAN is one example of EU co-funded H2020 projects to stimulate European automotive battery production
- Development of cell chemistry through to module and testing
- 5V prototype cell built
- Final results pending

Challenges

- Large number of process parameters to control and harmonize
- Materials optimization and compatibility (cell harmonization)
- Scale-up laboratory → pilot
- Manufacturability (equipment constraints)
- Meeting automotive requirements energy density ←→ power density, cycle life, safety

Commercialisation

 5V cells not commercially available yet; expected in mid-2020s.

THANK YOU FOR YOUR ATTENTION

www.ecaiman.eu

boschidar.ganev@ait.ac.at

