
FCH Austria: Status Quo and Perspectives

Assoc.Prof. Dr. Manfred Klell Eco-Mobility, Vienna, 20th October 2014

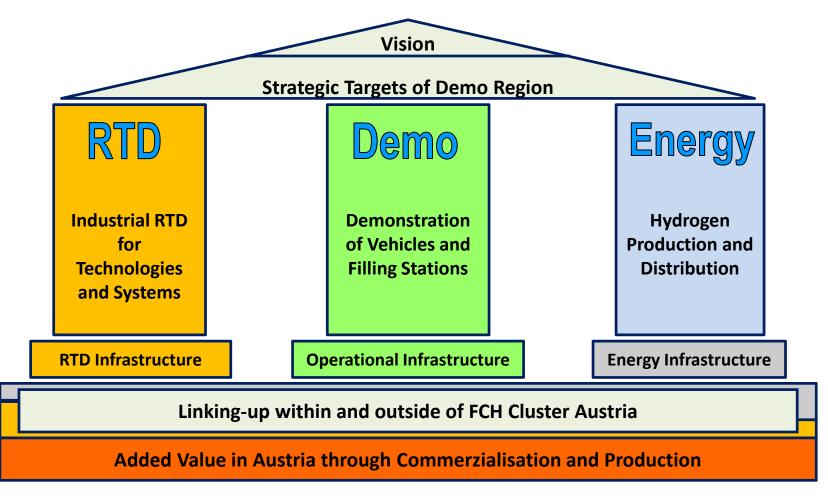
Carbonfree Energy Economy

Transport

short range, long charging

Hydrogen

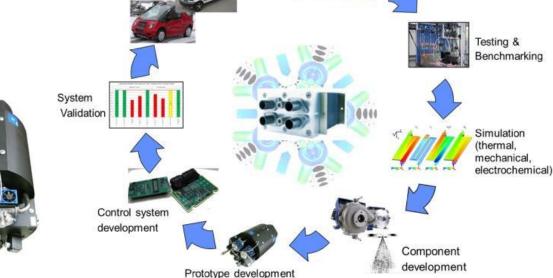
long range, short filling



FCH Austria - Vision

Austria as **capable supplier** and **internationally acknowledged partner** for Fuel Cell & Hydrogen Technology with **H2 Stations** and **FC Demo-Vehicles**

Strategy AVL



Stack Diagnoses and on-board monitoring

Research Topics:

- **PEM FC test stands for system and components**
- Simulation Tools, Measuring- and Testsytems for PEM-FC und SOFC
- Aging process of FC-Systems
- highly dynamic test stand for FC-components
- SOFC for APU, Heat/Cool/Power
- PEM FC Range Extender Vehicle
- **PEM FC Vehicle**
- High Temperature Electrolysis SOEC

Vehicle Application

Automotive PEM compressor (18kW, >2.5bar)

Research Topics:

- Valve technology and Testing for H2 pressure vessels
- Accelerated aging of FC-Systems
- PEM-FC Range Extender
- PEM High Pressure Electrolysis
- Development of cost-efficient components and system-integration for PEM High Pressure Electrolysis
- broadening of product portfolio for PEM High Pressure Electrolysis and for stationary as well as mobile PEM-FC Applications

F

EC Home / Backup

HyLOG Fleet 26F

<u>Municipal Vehicles</u> Voltage: 80V Power: 2 x 10kW / 30kWp Environment: Outdoor / public roads

Class 1 Forklift Trucks Voltage: 80V Power 1 x 10kW / 30kWp

Environment: Indoor / outdoor plant grounds, public roads

Strategy MAGNA MAGNA STEYR

Research Topics:

- Vehicle concepts including simulation tools for innovative power trains (ICE & xEV)
- Development of Production processes parallel production of conventional, hybrid, and fuel cell power trains
- Storage of hydrogen in automotive applications optimization of costs and capacity
- Tests and Validation of components, systems and vehicles
- Integration into different vehicles

Research Topics:

- H2 Production: central vs. local, renewable, power-to-hydrogen
- H2 Dispenser technology: compression, high pressure storage
- H2 Filling stations in Austria: cross linking with DE, IT, SLO, CZ
- H2 Logistics & Distribution
- FC Demo Vehicles (Hyundai, Honda 2015, Toyota 2015, Daimler 2017)

Strategy HyCentA

First Austrian research center for hydrogen with test stands and filling facility since 2005

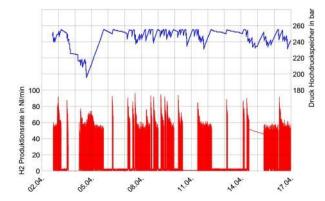
- Testing activities with customer-specific hydrogen test setups with electronic process control
- Thermodynamic analysis of hydrogen
 processes and systems
- Economical and ecological analysis of hydrogen processes and systems
- Expertise in questions of safety, standards and regulations of hydrogen processes and systems
 - Scientific research, lecturing and publications

Projects FCH

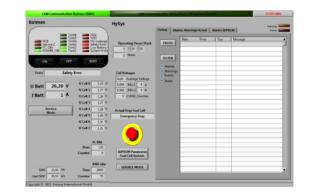
	_																						Р	roje	ktz	eitse	chier	e de	er FO	CH P	roje	kte																											
					015								201											201										201											019										2020				
	1	23	4	5 (67	8	9 10	11 1	.2	12	3	4 5	6	7	8	9 10	11	12	1	2	3	4	5	6	7	8 9	9 10	11	12	1	2 3	4	5	6	7	8	9 1	10 1	11 13	2 1	1 2	3	4	5 6	5 7	8	9 1	10	11	2 1	1 2	2 3	4	5	6	78	, 9	10	11 12
													SO	FCI	NSC (AVL)	_					-	-						_											1												.						
																																																						.					
					_				F	CH-PE	MM	AT (/	AVL)																																									.					
											⊥	┶																																										.					
				-			_					InD	Dia-FC	C (A)	/L)																																							.					
												┶																																										.					
				_	_		_					_				Optil	C-S	ys (/	VL)									_		_		_																					.					
Sa											⊥	⊥																																										.					
Säule							_				FCH	-000	OL-PE	M (I	Fror	iius)				_																																		.					
F&E												┶																																										.					
m							_			Modu	lare	low-	cost	H2 1	anl	stell	e mi	t Ele	ktr	oly	rse f	ür 3	350	und	700)baı	r (Fro	nius	5)		_	_																						.					
																																																						.					
							_				FCH	Hoch	hdrug	:k (H	yCe	ntA)			_	_																																		.					
											⊥	⊥																																										.					
	FCH MOPS (HyCentA)																																								.																		
								Ц			<u> </u>	┶	<u> </u>								_											Ļ																						.					
					_		_					_		- 1	-	FC	I HE	LI (F	lyC	ent	tA)	-		1	-	_	1		_	-	_	-																						.					
												┶							<u> </u>		_	ļ																																.					
					_						_	_		_	H	2-Stat	ion	Cheo	ker	r (N	/lag	na)		-	-	_	_		_	-	_	-																						.					
	Ш		—	_	1						_		L.I			<u> </u>		_			6						<u> </u>		. (5	1	Ļ			_			_			-																			
		r r	1 1	-	1			Demo	Kal	tstar	- un	1 Fro	stbe	triet	osta	hige I	Bren	inste	offz	elle	e tu	r die	e Na	ahru	ngs	mit	tello	gisti	k (Fi	roni	us)	1		-	-		- T	1																					
																								-						_								KOR	MM-	DEA	10						_				┶	┶	ш		_				
																								-	Т	-	_	Т	- 1	-	-	-	—	_		PE	EIVI-	KUP	VIIVI-	DEN		From	iius)	-	-			-	-		—	—	—	<u> </u>	-				
Ś																													H	_							-		0.11-1		- 1/-		unal-			A.1.6	-				15.00			<u> </u>	╧	┶	ш	Щ	┶
Säule Demo																														-	1	T		-				EIVIC		ban	еко	mm	unai-	81	ogis	tikta	anrze	eugi	tecn	INIK	(Fro	nius	5)	T	—	—		ΓT	—
eD	Р					Ļ	100	BioF		II (Hy	Cant	~		_		_	_	-																																				.					
em		гт	тт	Т	т	Ē	1	DIOFI	eet	п (пу	Lent	<u> </u>	тт	-	Т		-																																					.					
•											<u> </u>	_			Н2	Citylo	aict	ik G	r 27	(H)	vCo	nt A	<u>۱</u>			_					_	<u> </u>																											
						<u>г т</u>	—	П	T	11	<u> </u>	—	-	1	112		[/] 5131		142	1	yce		<u>,</u>	Т	Т	1	1	Т		Т	Т	1																						.					
												-		-	-		-	-	-			18.	HEI	I Eld	110	(H)	Cent	A)	-	-	-	-		-	-	_	-	-	-															.					
											—	T	TT	Т	Т		Т	Т	т		1	10	1	110	lie	(11)	Cem	~,	Т	т	Т	T	П	Т	1	Т	Т	Т																.					
											_	-	1 1	_	FC	H DEI	NO	Flee	t G	raz	(0)																																						
									F		T	T		Т	1				1	T	1	1	Т	Т	Т	Т		Т				1													1							1						11	
Säu											_	-									E	nerg	zieh	aus	(Fre	oniu	is)							_											1							1						11	
Säule Energie											Т	Т		Т	Т			T	T	Т	Ī			1	T	T		Т		Т	Т	Г						1							1							1						11	
			1		1								1														1				1	1							_	_		1		1	1						╧┻┷╸	<u> </u>	<u> </u>				┶┷┙	لحصه	

Austrian lighthouse project

- Replacement of industrial trucks battery by a fuel cell range extender and a 200 bar hydrogen storage system
- Onsite hydrogen production from biomethane
- European's first hydrogen indoor refueling infrastructure

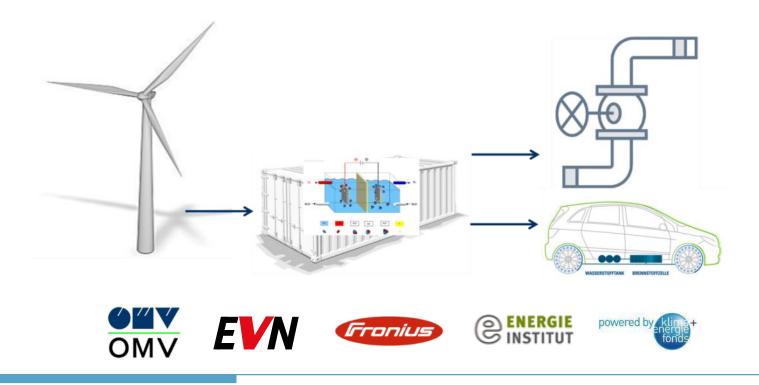


Project E-LOG BioFleet II 2014 – 2016


Scientific project contents

- Monitoring and optimization of the fuel cell battery hybrid system
- Monitoring and optimization of the onsite hydrogen infrastructure
- Maintenance and service requirements under real-life operating conditions and advanced system lifetime
- User research and evaluation of demonstration

HyLogger



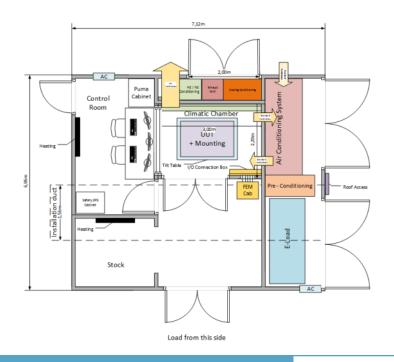
Project w2h Wind2Hydrogen 2014 - 2016 HyCentA

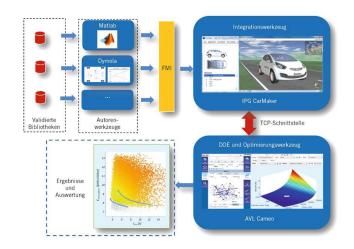
Storage of volatile, renewable electricity by production of hydrogen

- Installation of a 100 kW pilot plant
- Development of innovative high pressure PEM-electrolycer 150 300 bar
- Production of hydrogen for sustainable mobility and injection into the gas grid without mechanical compression

Project FCH Media 2014 – 2016

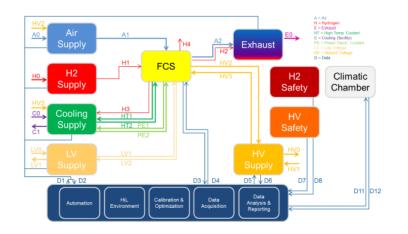
Research on instrumentation and actuation of fuel cell testbenches, focused on high dynamic conditioning of hydrogen and air as well as dynamic flow measurement principles including appropriate calibration techniques.


E CNGEMD	and the second		Contraction of the second		_ Dix	1	
BEXR	i 🕸 🖾 \varTheta 🚜 🖸		_i 89.	0.0.76::591	0		
	Conclus Sensore		Anitos #1				
	Cor. Flow DN1	-0.0001	Systempressure	0.43			
Page 1	Cor. Flow DN4	-0.0047	Inputpressure	2.15			
Page 2	Cor. Flow CMFS015	-0.0744	Outputpressure Press, N2 reserve	-0.0 sr 0.70			
	Cor. Density DN1	2,9081	Voltage CU	0.03			
Page 1	Cor. Densi ELNGCMD		and the second second second				_10
	Cor. Densi 🖾 🐂 ≱	0	A 13			\$9.0.0.76::5	910
	Car Temp Car Temp Car Temp Analog_OU CU Power1	Diatis biobist biotist Plausibil	1 1				a ba I
	CU Power1 AD_04	No. Type	. Cemand meas.	Dimit now	Repeats	reas. Time Tren	th CO Fils
Online Values Output Press.	Result VIEr						
		_					
	Online Va		es StateMachine	Rep	ulation Param	Graph Page	
		ess. Result V		FORCE IO			s Warnin



Project HIFAI – RSA 2014 – 2017

- System integration test bench for scientific research on PEM fuel cell systems up to 100 kW
- Hardware in the Loop, real time simulation of vehicle, driver, and driving cycle
- Continuous tool chain for optimization of application concepts by combining simulation, optimization and test bed tools



- Research topics:
 - Optimization of energy and thermo management
 - Accelerated aging tests procedures
 - Improved cold start behavior
 - System configuration and integration for stationary and mobile applications
 - Improved energy efficiency of entire test bed

HyCentA 2.0 with Austrian as well as international partners serves as a focus for comprehensive research and development activities for all aspects of hydrogen economy.

Targetoption 1: COMET K1 Centre for Hydrogen

Targetoption 2: Christian Doppler Labor "Thermodynamics of Hydrogen"

Targetoption 3: TU Graz Foundation Institute for "Hydrogen Economy"

Thank you for your kind attention!

Contact:

HyCentA Research GmbH Assoc.Prof. Dr. Manfred Klell (CEO) Inffeldgasse 15 A-8010 Graz

Tel.: 0316-873-9500 klell@hycenta.at

