U.S. Department of Energy Overview of Hydrogen and Fuel Cell Activities

Energy Efficiency & Renewable Energy

Eco-Mobility 2014

October 20th, 2014

Vienna, Austria

Dr. Sunita Satyapal

Director Fuel Cell Technologies Office Energy Efficiency and Renewable Energy U.S. Department of Energy

U.S. Energy Consumption

ENERGY Energy Efficiency & Renewable Energy

U.S. All-of-the-Above Energy Strategy

ENERGY Energy Efficiency & Renewable Energy

"As part of an all-of-the-above energy approach, fuel cell technologies are paving the way to competitiveness in the global clean energy market and to new jobs and business creation across the country."

> - Secretary Moniz, U.S. Department of Energy

"We've got to invest in a serious, sustained, all-of-the-above energy strategy that develops every resource available for the 21st century."

- President Barack Obama

Secretary Moniz at DC Auto Show

U.S. Electric Drive Vehicle Sales, by Technology (1999-2013)

2013 Sales Set Record

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

ENERGY

- **46** EDV models were available for sale
 - 575,000 Sales
- ~97,000 PEVs Sold. The top 6 models represent 95% of the sales :
 - Volt (23,094)
 - Leaf (22,610)
 - Model S (19,400)
 - Prius PHEV (12,088)
 - Cmax Energi (7,154)
 - Fusion Energi (6,089)
- Over **3.1** million EDVs on the road Jan.1, 2014

EV Everywhere Grand Challenge

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

President Obama announced EV Everywhere during a visit to Daimler Trucks in North Carolina, March 2012

EV EVERYWHERE – EARLY SUCCESSES The top four things you need to know

- DOE research and development has reduced the cost of electric drive vehicle batteries to \$325/ kWhr, 50% lower than just four years ago.
- In the first year of the Workplace Charging Challenge, more than 50 U.S. employers joined the Challenge and pledged to provide charging access at more than 150 sites.
- ► DOE investments in EV Everywhere technology topped \$225 million in the last 12 months, addressing key barriers to achieving the Grand Challenge.
- Consumer acceptance is rapidly growing 97,000 plug-in electric vehicles were sold in 2013, nearly doubling 2012 sales.

Office of Energy Efficiency and Renewable Energy (EERE)

Energy Efficiency & Renewable Energy

Three offices support EERE's mission to create and sustain American leadership in the transition to a global clean energy.

Renewable ELECTRICITY GENERATION

Sustainable Transportation- Areas of Focus

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Efforts in three areas -H₂ and Fuel Cells, Vehicle Technologies and Bioenergy- are helping to meet national Energy goals and Climate Action Plan

Growth in Clean Energy Patents

Number of patents in clean energy technologies continues to grow and roughly 1,000 U.S. patents have been issued for fuel cell technologies for 3 consecutive years.

US Clean Energy Patents¹

Examples of companies with most fuel cell patents:

Energy Efficiency &

Renewable Energy

• GM

U.S. DEPARTMENT OF

ENERGY

- Honda
- Toyota
- Samsung
- Nissan
- Ballard
- Panasonic
- Plug Power
- Delphi

¹ Clean Energy Patent Growth Index http://cepgi.typepad.com/heslin_rothenberg_farley_/2013/03/clean-energypatent-growth-index-2011-year-in-review.html

Energy Efficiency & Renewable Energy

Fuel cell market is growing with a consistent ~30% annual market growth rate since 2010

Market Growth

- Consistent ~30% annual growth in global systems shipped since 2010.
- >25% increase in global MWs shipped since 2012
- 35% increase in revenues from fuel cell systems shipped over last year

Fuel Cell Systems Shipped by Application

Source: Navigant Research

Fuel Cell Cars are Here!

ENERGY Energ

Energy Efficiency & Renewable Energy

FCEVs on display at North American auto shows in 2013

Honda Fuel Cell Electric Vehicle

Toyota Fuel Cell Electric Vehicle

Hyundai's first mass-produced Tucson Fuel Cell SUVs arrived in Southern California May 20, 2014

Lease includes H₂ and maintenance.

Well-to-Wheels Greenhouse Gases Emissions Projections

Low/medium/high: sensitivity to uncertainties associated with projected fuel economy of vehicles and selected attributes of fuels pathways, e.g., electricity credit for biofuels, electric generation mix, etc.

 H_2 from Distributed NG can reduce CO_2 emissions by 50%

Source: http://hydrogen.energy.gov/pdfs/13005_well_to_wheels_ghg_oil_ldvs.pdf

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

DOE Hydrogen and Fuel Cells Program

Integrated and structured effort to address all the key challenges and obstacles facing widespread commercialization of hydrogen and fuel cells in a wide range of applications.

2020 Targets by Application

DOE Fuel Cell Technologies Office covers Research, Development, Demonstration & Deployment

U.S. DEPARTMENT OF ENERGY Rel

Energy Efficiency & Renewable Energy

DOE Demonstrations

Demonstrated

- >180 FCEVs
- 25 stations
- 3.6 million miles traveled
- <u>World's first tri-gen station</u> (250 kW on biogas, 100 kg/d H2 produced)

Deployments

- DOE Recovery Act
- Market Transformation Projects
- Government Early Adoption (DoD, FAA, California, etc.)
- Tax Credits: 1603, 48C

Recovery Act & Market Transformation Deployments

~1,600 fuel cells deployed >11,000 follow on orders

DOE FCTO funding has led to >450 patents, 42 commercial hydrogen and fuel cell technologies and 65 emerging technologies. DOE cost-share deployments led to 7X additional back up power and lift trucks.

Key Activity	FY 2014 (\$ in thousands)		FY 2015 (\$ in thousands)	
	Request	Approp.	Request	
Fuel Cell R&D	37,500	32,422	33,000	Office
Hydrogen Fuel R&D ¹	38,500	34,467	36,283	Basic Science ²
Manufacturing R&D	4,000	2,879	3,000	
Systems Analysis	3,000	3,000	3,000	Fossil Energy,
Technology Validation	6,000	6,000	6,000	SECA
Safety, Codes and Standards	7,000	6,909	7,000	ARPA-E ³
Market Transformation	3,000	2,841	3,000	FY14 DOE To
NREL Site-wide Facilities Support	1,000	1,000	1,700	
SBIR/STTR	TBD	3,410	TBD	
Total	\$100,000	\$92 , 928	\$92,983	

Office	FY 2014
Basic Science ²	~\$25M
Fossil Energy, SECA	~\$25M
ARPA-E ³	~\$33M

otal: ~\$175M

¹Hydrogen Fuel R&D includes Hydrogen Production & Delivery R&D and Hydrogen Storage R&D

²Hydrogen and Fuel Cell related funding finalized end of FY14

³ Fuel cell related new projects from ARPA-E

Fuel Cell Cost Reductions Enabled by R&D

ENERGY Energy Efficiency & Renewable Energy

R&D has enabled significant fuel cell cost reductions but catalyst cost is still a key challenge.

Fuel Cell Cost Reductions

Fuel Cell System Cost* Cost Breakdown

Fuel Cell Cost Status and Goal

- **\$55/kW*** for high volume
- ~\$280/kW⁺ for low volume
- **\$40/kW** by **2020** is the goal

*SA, bottom-up analysis of model system manufacturing cost, 500,000 sys/year with next-gen lab technology. †ORNL, top-down analysis based on OEM input, 20,000 sys/yr. with current technology.

Catalyst accounts for >45% of total system cost

*For PEMFC Stack cost, 500,000 units per yr.

Cost is shows as \$/kW-net.

Energy Efficiency & Renewable Energy

New nanoframe catalysts developed with mass activity >30X higher than Pt/C catalysts in RDE testing (BES-EERE collaboration)

A PtNi₃ Polyhedra B PtNi Intermediates

Energy Efficiency & Renewable Energy

New nanoframe catalysts developed with mass activity >30X higher than Pt/C catalysts in RDE testing (BES-EERE collaboration)

C Pt₃Ni Nanoframes D Pt₃Ni nanoframes/C with Pt-skin surfaces

Dispersible cathode catalyst with extended thin film catalyst properties

Synthesis & Evaluation of Nanoframes

Energy Efficiency & Renewable Energy

New nanoframe catalysts developed with mass activity >30X higher than Pt/C catalysts in RDE testing (BES-EERE collaboration)

New nanoframe catalysts developed with mass activity >30X higher than Pt/C catalysts in RDE testing (BES-EERE collaboration)

"Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces" Vojislav Stamenkovic (ANL) & Peidong Yang (LBNL/UCB) Science, 343 (2014) 1339

Hydrogen Production Strategies

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Distributed production is a feasible option for the near term while central production will be more relevant in the longer term.

- Short Term:
 - Natural Gas
- Long Term:
 - Renewables
 - Biological
 - Electrolysis (Wind & Solar)
 - High Temperature Thermochemical (e.g. solar, nuclear heat, etc.)

Hydrogen Delivery

R&D has enabled H₂ delivery reduction costs but compression is still a key challenge.

targets. *

* Details for the high volume cost projection assumptions can be found in Record 13013

**Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs, May 2014, ttp://www.hydrogen.energy.gov/pdfs/58564.pdf

CSD Cost Breakdown for the Pipeline Scenario (\$2.40/kg total)**

Understanding H₂ Storage System Costs

U.S. DEPARTMENT OF ENERGY

Energy Efficiency & Renewable Energy

700 bar compressed hydrogen is the onboard storage technology for initial FCEV rollout, however cost reductions are needed – Carbon Fiber is the key

700 bar Compressed Gas Storage System Cost* and Targets

- Boss (Materials & Proc.)

700 bar system cost breakdown at 500,000 systems/year

Composite materials (including precursor fiber) account for >60%of total storage tank system cost

*Single tank holding 5.6kg H2 total, cost in 2007\$

Addressing Data Validation Challenges

DOE awards light-duty fuel cell vehicle data collection projects.

QUICK STATS:

- **\$5.5M** in DOE funding
- 6 auto partners

Data from ~ 90

Planned mileage: ~500K mi.

- Phase 1 = ~220,000 mi
- Phase 2 (anticipated) = ~235,000 mi

METRICS:

- Fuel cell stack durability and efficiency.
- FCV range, driving behavior, fuel economy, and maintenance.
- On-board H₂ storage performance.
- H₂ infrastructure and refueling performance.
- H_2 fuel constituents measured at stations.
- Safety

Energy Efficiency &

Renewable Energy

First Composite Data Products to be released October 2014

U.S. DEPARTMENT OF

Hyundai

H₂ Infrastructure

 H_2 Production and Delivery efforts are focusing on achieving a cost of H_2 dispensed at the pump of < \$4/gge to be competitive with conventional fuels.

Current U.S. H₂ Infrastructure

- 1,500 miles of H₂ pipelines (CA, TX, LA, IL, and IN)
- > 9 million metric tons of H₂ produced/yr.
- ~ 50 fueling stations in the U.S. (~ 10 public)

Options for Low-Cost Early Infrastructure

• H₂ delivered from central site:

Low-volume stations (~200-300 kg/day) would cost <\$1M and provide hydrogen for \$7/gge

• Distributed production (e.g. natural gas, electrolysis)

Other Options

- H₂ from waste (industrial, wastewater, landfills)
- Trigeneration Electricity Power Natural Gas Cooline Natural Gas or Biogas Fuel Cell Coproduction of H₂ Excess power generated by the Combined heat, hydroge fuel cell is fed to and power (CHHP) or the grid Trigeneration Power + Heat + H_2

are coproduced through trigeneration

Examples of Hydrogen and Fuel Cell Initiatives at the State Level

ENERGY Energy

Energy Efficiency & Renewable Energy

Several states—including California, Connecticut, Hawaii, Ohio, New York, and South Carolina—have major hydrogen and fuel cell programs underway.

8 states sign MoU to put 3.3M ZEVs on roads by 2025

California, Connecticut, Massachusetts, Maryland, New York, Oregon, Rhode Island, & Vermont

• Represents a new vehicle market penetration of ~15%

California

FCEVs and Fuel Cell Buses

- > 560 vehicles in operation since 1999
- > 6 million miles driven
- > 1 million passengers on fuel cell buses

H₂ Station Investment

- >\$50M invested (CARB and CEC)
- ~\$47M for 28 stations and 1 mobile refueler (CEC PON 13-607)
- \$20M planned annually thru 2023 for at least 100 stations (AB8)

3 phase plan modelled by CCAT for the development of hydrogen infrastructure and deployment of FCEVs in the north eastern coastal metro centers.

Hawaii

Agreement signed by 12 stakeholders that includes several provisions:

- **15 GM FCEVs** currently in demonstrations with military
- Renewable hydrogen (geothermal and wind) to power buses
- Public access nascent refueling infrastructure on Oahu by 2020

H2USA: Public-Private Partnership

Mission: To promote the commercial introduction and widespread adoption of FCEVs across America through creation of a public-private partnership to overcome the hurdle of establishing hydrogen infrastructure.

Established H₂FIRST Project-H₂ Fueling Infrastructure Research & Station Technology

in support of H₂USA

Energy Efficiency & Renewable Energy

NREL and SNL Provide:

- <u>Technical expertise</u> Hydrogen specific materials and systems
- <u>Facilities</u> for technical collaboration and validation
- <u>Objectivity</u> Independent and objective assessment

Hydrogen Fueling Infrastructure Research and Station Technology

Leverage DOE National Lab Network

Project Teams

- Station Qualification
 - Dispenser
 Components Research
- Fuel Quality Sensor
- Station Component RD&D
- Reference Station
 Design

27 | Fuel Cell Technologies Office

Key Early Market Challenges Addressed by H₂USA

<u>Photo Credits</u> Top: NREL, Middle: NREL, Bottom: Hexagon Lincoln

Station Cost Reduction

- Fueling resources & delivery
- State and local regulations

Station Locations

- Identify and prioritize markets
- Regulatory barriers (zoning)
- Station rollout timing

Investment and Finance

- Private sector financing
- Government support

Market Support and Acceleration

- Product launch and timeline
- Codes and standards (non-vehicle related)
- Public education

The Importance of Early Market Applications

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Early market applications enable fuel cell cost reduction, a domestic supply base, an emerging infrastructure and customer acceptance, en route to light duty vehicles.

Widespread Market Entry Pathway for Fuel Cells

Forklifts

Baggage Tow Tractors

Drayage Trucks

Delivery Vehicles

Delivery Vehicles

Full Size Buses

Shuttle Buses

Cost of Fuel Cells

Outreach and Communications

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- Publications ~80/yr.
 - Monthly Newsletter
 - Success Stories
 - News Alerts
 - Blogs
- Annual Merit Review
 & Peer Evaluation
 - June 2014- 1,800 attendees
- Investor Days
 - NYC and CA- showcased H₂ and fuel cell companies to investment community & peer reviewed projects
- Ride-n-Drives
 - Hyundai Fuel Tucson Ride-n-Drive at DOE Headquarters on September 16, 2014
- House Senate Caucus Events

ENERGY Energy Efficiency & Renewable Energy

Fuel Cell Technologies Program

January 2012 Newsletter

Welcome to the inaugural issue of the Fuel Cell Technologies Program newsletter. This newsletter will be issued monthly to our Fuel Cell News subscribers and will include a recap of the previous month's news and events as well as a preview of upcorring activities.

In this issue:

- In the News
 Eurofing Opportunities
- <u>Recent Blogs</u>
- Webinars and Workshops
 Events Colorder
- <u>Events Calendar</u>
 Studies, Reports, and Publications

In the News

Fuel Cell Technologies Program Newsletter Website Snapshot

Deputy Secretary of Energy, Daniel B. Poneman test driving Hyundai Fuel Tucson

President Obama at Fuel Cell Exhibit in Sweden

International Partnerships

Energy Efficiency & Renewable Energy

International Partnership for Hydrogen and Fuel Cells in the Economy

- Representatives from 16 member countries & the European Commission
- Facilitates international collaboration and a forum for advancing policies education
- Recent Activities:
 - Launched international round robin testing of Type IV tanks

iea International Energy Agency

International Energy Agency

- Implementing Agreements
 - Advanced Fuel Cells Implementing Agreement: 13 member countries currently implementing seven annexes

U.S. DEPARTMENT OF

ENERG

 Hydrogen Implementing Agreement: 18 member countries, plus the European Commission currently implementing nine tasks

Other Collaboration examples

Joint Technology Initiative (JTI); MOUs (NEDO-AIST-LANL, Hiroshima U-LANL); Bi-lateral agreements, strong international collaboration on safety

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

I a N a Ke

✓ Continue to promote and strengthen R&D activities

- H₂, fuel cells, safety, manufacturing, etc.
- Cost, performance, durability need to be addressed
- Conduct strategic, selective demonstrations of innovative technologies
 - Industry cost share and potential to accelerate market transformation

✓ Continue to conduct key analyses to guide RD&D and path forward

- Life cycle cost; infrastructure, economic & environmental analyses, etc.

✓ Leverage activities to maximize impact

- U.S. and global partnerships
- H2USA: Public-Private partnership to enable widespread commercialization of H₂ vehicles in the United States

"It is literally true that you can succeed best and quickest by helping others to succeed"

- Napoleon Hill

Thank You

Dr. Sunita Satyapal

Director

Fuel Cell Technologies Office

Sunita.Satyapal@ee.doe.gov

hydrogenandfuelcells.energy.gov