Eco-Mobility 2014, Wien

Daimler's road to FCEV market introduction

Dr. Jörg Wind, 20.10.2014

Daimler AG

Dr. Jörg Wind / Daimler AG

Responsibility for our Blue Planet

- Worldwide rising demand for mobility will increase CO₂ emissions
- Fossil resources are limited and will therefore become more expensive

The Powertrain Portfolio for the Mobility of Tomorrow

Our Roadmap to a Sustainable Mobility

Highly Efficient Internal combustion engines

A 180 CDI BlueEFFICIENCY

3,6 I/100 km 92 g CO2/km Full and Plug-In Hybrids

S 500 PLUG-IN HYBRRID

2,8 I/100 km 65 g CO2/km Electric vehicles with battery and fuel cell

B-Class Electric Drive smart electric drive B-Class F-CELL

> l/100 km 0 g CO2/km

FCEV and BEV Characteristics

Electric Vehicles with Batteries		Electric Vehicles with Fuel Cells
	Common Strengths	
<image/>	Reduction of greenhouse gas with zero emission vehicles Efficient energy usage Independence of oil Drive and comfort with electric drive Low noise emissions	THE STEE STEE STEE STEE STEE STEE STEE S
 Highest energy efficiency and lowest greenhouse gas emissions of all drive trains 	• Strengths	Short refueling time and thus unlimited range Fuel cell drivetrain suitable for car and bus applications
 High charging time Inexpensive and long-lasting batteries Supply of carbon-free electricity A nationwide charging system 	Challenges	Component costs Inexpensive and long-lasting fuel cells Supply of carbon-free hydrogen A nationwide refueling system

For future emission-free mobility, both drive train technologies will be needed!

Variety of sources to produce fuels for passenger cars

Potential to store the fluctuating energy and support the energy change in Germany

H₂ Production Pathways with the Potential of Producing a Significant Amount of Hydrogen

Natural Gas Reforming	 Production capacity in petrochemistry is usable on short term Moderate CO₂ reduction 			
Biomass Gasification	 CO₂ neutrality Sustainable, reduction of dependencies Competition among different applications (synthetic fuels, stationary use) 			
Renew. Electr. Electrolysis	 Many big offshore wind parks already planned Hydrogen is a means of storage for excess electricity Good energy and CO₂ balances at the same time 			
Nuclear Electr. Electrolysis	 Good CO₂ balance Trend towards an extension of nuclear energy capacity Very unfavourable energy chain and limited resources 			
Coal Gasification	 Largest fossil energy resources <u>Only usable</u> if CO₂ capture and storage is technically and economically feasible 			
Hydrogen as a Byproduct	 In certain chemical processes (chlorine alkali electrolysis) hydrogen is produced as a by-product Short term production capacity in chemical industry Little energy input and costs, moderate CO2 reduction, limited capacity 			
Hydrogen as a by-product of the chemical industry as well as hydrogen from natural gas can cover a significant part of the H2 demand during the phase of introduction of FC vehicles				

➔ gradually switch to regenerative H2

Best CO2-Balance

Highest Capacity

CO₂- and Energy comparison

Fuel Cell: High range (>500 km), short refueling time (3 min), Applicable for different vehicle conceptsBattery: Optimal operation in compact cars for the city traffic (100-150 km), Recharging over night

*GHG: Green House Gas

Source: JRC/EUCAR/CONCAWE (2013) WtW Report, Version 4

Electric drive trains are a real step to reduce energy consumption and green-house-gas emissions. Using EVs means a significant step forward.

Dr. Jörg Wind / Daimler AG

Activities of DAIMLER AG within Fuel Cell Vehicles

History of Fuel Cell Vehicles - almost 20 years of Experience

The Current Generation of Fuel Cell Vehicles

B-Class F-Cell:

Specifications*				
Vehicle	Mercedes-Benz B-Class F-Cell			
Fuel Cell System	PEM, 90 kW (122 hp)			
Engine	Output (Cont./ Peak) 70 kW / 100 kW (136 hp) Max. Torque: 290 Nm			
Range	380 km (NEDC)			
Top Speed	170 km/h			
Acceleration 0-100 km/h (0-60 mph)	11.4 sec			
Battery	Lithium-Ion			
Li-Ion Battery	Output (Cont./ Peak): 24 kW / 30 kW (40 hp) Capacity: 6.8 Ah, 1.4 kWh			

The Current Generation of Fuel Cell Buses –

"Driving the Future" becomes Reality

Specifications*				
Vehicle	Citaro FuelCELL-Hybrid			
Fuel Cell System	120 kW (const.) / 140 kW (max.)			
Frankra	Output (const. / max.):			
Engine	2 x 80 kW / 2 x 120 kW			
Range	> 250 km			
Hydrogen Storage	35 kg Hydrogen (350 bar)			
H ₂ -Consumption	10 – 14 kg / 100 km			
HV-Battery	26,9 kWh, Output 250 kW			
Efficiency FC-System	58 - 51 %			

Citaro FuelCELL-Hybrid:

2 Fuel Cell Systems also used in B-Class F-CELL

Market Preparation – Worldwide Fleet Operation

Fleet Demonstration with the Current Generation of Fuel Cell Vehicles

North America & Europe 200 B-Class F-CELL

Fleet Demonstration

10 F-CELL Oslo

Fleet Demonstration

- 20 F-CELL Hamburg
- 40 F-CELL Berlin
- ▶ 10 F-CELL Frankfurt
- 20 F-CELL Stuttgart **F-CELL Wien**

ca. 30 F-CELL Internal Car Pool

Small Series A-Class F-CELL (60 Units) vehicle miles travelled > 2.230.000 km

Small Series B-Class F-CELL (200 Units) vehicle miles travelled > 3.300.000 km

▶ 8 Busses Italy (5 Bolzano, 3 Milano)

Small Series Citaro FuelCELL (36 Units) vehicle miles travelled > 2.150.000 km

Small Series Citaro FuelCELL-Hybrid (23 Units) vehicle miles travelled > 700.000 km

Europe 23 Citaro FuelCELL Hybrid busses

Successful daily operations in customer hands Mercedes-Benz B-Class F-CELL – Customer voices ...

I am fascinated by the torque and the silence.

My next vehicle will be a fuel cell car again. It is such a smooth ride:

My 13year old kid "forced" me to demonstrate the car at school to his class mates. The FCEV was clearly the most special car around.

I expected a Mercedes -and I got a Mercedes.

over 3 Mio. km driven in customer hands

I never experienced any restrictions because it is a gas vehicle. I frequently take the F-CELL on the ferry.

I am driving the future. Literally.

After driving a FCEV, you don't want to get back to your old car

Technology: Demonstration of technical maturity Mercedes-Benz F-CELL World Drive 2011!

DAIMLER AG demonstrated the reliability and technical maturity of their B-Classes F-CELL and their leadership in this technology.

Remaining Challenges of the Fuel Cell and Hydrogen Technology

- Fuel cell system & stack
- Electric engine
- H₂ tank system
- Infrastructure
- Hydrogen costs

Infrastructure

- Reliable refueling technology
- Build-up of an area-wide infrastructure
- H₂ production at competitive prices
- Availability of renewable produced hydrogen

Technical Advancements of Daimler's Fuel Cell Vehicles

	Range	H ₂ Consumption	Durability	Size	Power	Top Speed
		1/2 1/2 1/1	F-CELL World Drive		ALL.	120 140 160 80 180 180 185 185 195 195 195 195 195 195 195 19
	[miles]	[l/100km]	[hours]	[cu. Ft.]	[kW]	[mph]
GEN 1 A-Class F-CELL	+135%	/-16%	+100%	-40%	+30%	+21%
GEN 2 B-Class F-CELL						
Next Generation "target"						

From generation to generation great technical improvements in numerous technical areas.

Cost Potentials of the Fuel Cell Technology

- The cost for the fuel cell power train are currently much higher than those from conventional drive systems. They can be reduced considerably through scale effects and technology advances.
- A reduction of the costs on the level of conventional drive trains is possible.
- Regarding the TCO¹ comparable values to conventional drive systems are reachable.

Packaging of Fuel Cell System

Through a further modularization of the fuel cell specific components, the packaging of future generations of FC vehicles will be simplified.

The significantly more compact dimensions would allow a accommodation in the engine compartment of a conventional vehicle.

Modular Strategy for Different Propulsion Systems and Vehicles is the Basis for Economic Success!

FCEV and **BEV**

Comparison of cost per kWh electrical energy source

> At approx. 350 km Fuel Cell propulsion is less expensive than EV-battery propulsion

Daimler's Fuel Cell Technology Roadmap

Electric vehicles with fuel cell & battery

Daimler is dedicated to commercialize electric vehicles with fuel cell

Electromobility with batteries and fuel cells is already a reality today A total of nine locally emission free vehicles today

Infrastructure: The way to an area-wide H2-Infrastructure (Example Germany)

Infrastructure: CEP and other existing 700bar H2 Stations (Example Germany – 16 FS already in operation)

Daimler Commitment: 20 H₂-refuelling stations as a catalyst for the market introduction of fuel cell technology

Key Facts

- 20 new H₂ refuelling stations (FS) will be built from 2013 jointly by Daimler and Linde with support of federal government
- Refuelling stations primarily in "high-density" regions (e.g. Baden-Württemberg), metropolis and corridors
- Germany as first country, which will get an area-wide H₂infrastructure

Discussions with retail partners and location agreements

0044	0040	0040	0044	0045
ZUTT		/01.5	2014	2015
2011		2010	2017	2010

Approximate allocation of 20 FS

H₂ Mobility Joint Venture

Hydrogen refuelling stations in Germany (700 bar)2013: 15 HRS2015: 50 HRS

H2-Mobility Initiative in Germany

Build-up of a HRS-Network until 2023

Technical Configuration of a Hydrogen Fueling Station

Status quo of hydrogen filling stations:

- Pre-cooling down to -40° Celsius
- > Pressure of hydrogen: 350 and 700 bar
- Standardized refueling process (SAE TIR J2601, ISO/TS 20100) using infrared data interface for communication vehicle <> filling station (SAE J2799)
- > Refueling time: approx. 3 minutes for the B-Class F-CELL (ca. 4 kg hydrogen)
- Standardized hydrogen filling connector (SAE J2600, ISO/FDIS 17268)
- > Hydrogen fuel quality (SAE J2719, ISO/FDIS 14687)
- Unitized construction / scalable

Thanks for your attention!